
Sunday, May 15, 2011

A Not Very Short Introduction To
Node.js

Node.js is a set of asynchronous libraries, built on top of

the Google V8 Javascript Engine. Node is used for server

side development in Javascript. Do you feel the rush of

the 90's coming through your head. It is not the revival of

LiveWire, Node is a different beast. Node is a single

threaded process, focused on doing networking right.

Right, in this case, means without blocking I/O. All the

libraries built for Node use non-blocking I/O. This is a

really cool feature, which allows the single thread in

Node to serve thousands of request per second. It even

lets you run multiple servers in the same thread. Check

out the performance characteristics of Nginx and Apache

that utilize the same technique.

ANDERS JANMYR

@andersjanmyr

VIEW MY COMPLETE

PROFILE

Compartir Informar sobre mal uso Siguiente blog» Crear un blog Acceder

T H E T A P I R ' S T A L E
P R O G R A M M I N G , P H I L O S O P H Y , R E C U R S I O N , I N F I N I T Y A N D T H E M I N D .

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

1 de 26 06/08/11 15:48

The graph for memory usage is even better.

Read more about it at the Web Faction Blog

OK, so what's the catch? The catch is that all code that

does I/O, or anything slow at all, has to be called in an

asynchronous style.

// Synchronous
var result = db.query("select * from T");
// Use result

Top Posts -
PostRank

10.0 ASP.NET
MVC vs. Rails3
10.0 A Not Very
Short
Introduction To
Node.js
9.5 Mastery
8.9 Ruby, an
Exceptional
Language
8.6 Why Ruby?

Powered by Postrank

Blog
Archive

▼ 2011 (9)

► June (1)

▼ May (3)

Ruby, an
Exceptional
Language

A Not Very
Short
Introduction
To Node.js

Mastery

► April (1)

► March (2)

► February (1)

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

2 de 26 06/08/11 15:48

// Asynchronous
db.query("select * from T", function (result
 // Use result
});

So, all libraries that deal with IO has to be

re-implemented with this style of programming. The

good news is that even though Node has only been

around for a couple of years, there are more than 1800

libraries available. The libraries are of varying quality but

the popularity of Node shows good promise to deliver

high-quality libraries for anything that you can imagine.

H I S T O R Y

Node is definitely not the first of its kind. The

non-blocking select() loop, that is at the heart of Node,

dates back to 1983.

Twisted appeared in Python (2002) and EventMachine

in Ruby (2003).

This year a couple of newcomers appeared.

Goliath, which builds on EventMachine, and uses fibers

to allow us to program in an synchronous style even

though it is asynchronous under the hood.

And, the Async Framework in .Net, which enhances the

compiler with the keywords async and await to allow

for very elegant asynchronous programming.

G E T S T A R T E D

This example uses OSX as an example platform, if you

use something else you will have to google for

instructions.

► January (1)

► 2010 (18)

► 2009 (37)

► 2008 (20)

► 2007 (7)

► 2006 (14)

Software
Books

Agile Software
Development,
Principles,
Patterns, and
Practices

AspectJ in Action:
Practical Aspect-
Oriented
Programming

Clean Code

Concepts,
Techniques, and
Models of
Computer
Programming

Domain-Driven
Design: Tackling
Complexity in the
Heart of Software

Effective Java
Programming
Language Guide

Extreme

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

3 de 26 06/08/11 15:48

Install Node using Homebrew
$ brew install node
==> Downloading http://nodejs.org/dist/node-v
###
==> ./configure --prefix=/usr/local/Cellar/node
==> make install
==> Caveats
Please add /usr/local/lib/node to your NODE_PATH environmen
==> Summary
/usr/local/Cellar/node/0.4.7: 72 files, 7.5M

When installed you have access to the node

command-line command. When invoked without

arguments, it start a REPL.

$ node
> function hello(name) {
... return 'hello ' + name;
... }
> hello('tapir')
'hello tapir'
>

When invoked with a script it runs the script.

// hello.js
setTimeout(function() {
 console.log('Tapir');
}, 2000);
console.log('Hello');

$ node hello.js
Hello
...
Tapir

Programming
Explained:
Embrace Change

High Performance
Javascript

Javascript Patterns

Javascript, the Good
Parts

jQuery Cookbook

jQuery in Action

Metaprogramming
Ruby

Object Design: Roles,
Responsibilities,
and Collaborations

Object Models:
Strategies,
Patterns, and
Applications

Object-Oriented
Software
Construction

On LISP: Advanced
Techniques for
Common LISP

Programming in
Haskell

Purely Functional
Data Structures

Real World Haskell

Refactoring:
Improving the
Design of Existing
Code

Ruby Best Practices

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

4 de 26 06/08/11 15:48

N E T W O R K I N G

As I mentioned above, Node is focused on networking.

That means it should be easy to write networking code.

Here is a simple echo server.

// Echo Server
var net = require('net');

var server = net.createServer(function(socket
 socket.on('data', function(data) {
 console.log(data.toString());
 socket.write(data);
 });
});
server.listen(4000);

And here is a simple HTTP server.

// HTTP Server
var http = require('http');
var web = http.createServer(function(request
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 response.end('Tapirs are beautiful!\n');
});
web.listen(4001);

Quite similar. A cool thing is that the servers can be

started from the same file and node will, happily, serve

both HTTP and echo requests from the same thread

without any problems. Let's try them out!

curl the http service
$ curl localhost:4001
Tapirs are beautiful!

Smalltalk Best
Practice Patterns

Smalltalk,Objects
and Design

Structure and
Interpretation of
Computer
Programs

Test-Driven
Development: A
Practical Guide

The Little Schemer

The Mythical Man
Month

The Pragmatic
Programmer:
From Journeyman
to Master

The Rails 3 Way

The Reasoned
Schemer

The Ruby Way

The Seasoned
Schemer

The Well Grounded
Rubyist

Working Effectively
with Legacy Code

Wetware
Books

A Whole New Mind

An Introduction to

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

5 de 26 06/08/11 15:48

use netcat to send the string to the echo server
$ echo 'Hello beautiful tapir' | nc localhost
Hello beautiful tapir

M O D U L E S

Node comes with a selection of built in modules. Ryan

Dahl says that they try to keep the core small, but even so

the built-in modules cover a lot of useful functionality.

net - contains tcp/ip related networking

functionality.

http - contains functionality for dealing with the

HTTP protocol.

util - holds common utility functions, such as log,

inherits, pump, ...

fs - contains filesystem related functionality,

remember that everything should be asynchronous.

events - contains the EventEmitter that is used for

dealing with events in a consistent way. It is used

internally but it can be used externally too.

A N E X A M P L E

Here is an example of a simple module.

// module tapir.js

// require another module
var util = require('util');

function eat(food) {
 util.log('eating '+ food);
}

// export a function
exports.eat = eat;

Zen Buddhism

Brain Rules

Flow: The
Psychology of
Optimal
Experience

Gödel, Escher, Bach:
An Eternal Golden
Braid

Heidegger and a
Hippo Walk
Through Those
Pearly Gates

Infinity and the
Mind

Lila: An Inquiry Into
Morals

Man's Search For
Meaning

Plato and a Platypus
Walk into a Bar:
Understanding
Philosophy
Through Jokes

Strangers to
Ourselves

The User Illusion

Zen and the Art of
Motorcycle
Maintenance

Other
Books

A Short History of

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

6 de 26 06/08/11 15:48

As you can see it looks like a normal Javascript file and it

even looks like it has global variables. It doesn't. When a

module is loaded it is wrapped in code, similar to this.

var module = { exports: {}};
(function(module, exports){
 // module code from file
 ...
})(module, module.exports);

As you can see the code is wrapped in a function and an

empty object with an export property is sent into it. This

is used by the file to export only the functions that it want

to publish.

The require function works in symphony with the

module and it returns the exported functions to the

caller.

N O D E P A C K A G E M A N A G E R , N P M

To allow simple handling of third-party packages, Node

uses npm. It can be installed like this:

$ curl http://npmjs.org/install.sh | sh
...

And used like this:

$ npm install -g express
mime@1.2.1 /usr/local/lib/node_modules/express/node_modules
connect@1.4.0 /usr/local/lib/node_modules/express/node_modu
qs@0.1.0 /usr/local/lib/node_modules/express/node_modules/q
/usr/local/bin/express -> /usr/local/lib/node_modules/expre

Nearly Everything

Are Your Lights On?

Presentation Zen

Your Competent
Child

Links

My links on
del.icio.us

The Tapir Gallery

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

7 de 26 06/08/11 15:48

express@2.3.2 /usr/local/lib/node_modules/express

As you can see, installing a module also installs its

dependencies. This works because a module can be

package with meta-data, like so:

// express/package.json
{
 "name": "express",
 "description": "Sinatra inspired web development framewor
 "version": "2.3.2",
 "author": "TJ Holowaychuk <tj@vision-media.ca>"
 "contributors": [
 { "name": "TJ Holowaychuk", "email": "tj@vision-media.c
 { "name": "Guillermo Rauch", "email": "rauchg@gmail.com
],
 "dependencies": {
 "connect": ">= 1.4.0 < 2.0.0",
 "mime": ">= 0.0.1",
 "qs": ">= 0.0.6"
 },
 "keywords": ["framework", "sinatra", "web"
 "repository": "git://github.com/visionmedia/express"
 "main": "index",
 "bin": { "express": "./bin/express" },
 "engines": { "node": ">= 0.4.1 < 0.5.0" }
}

The package.json contains information about who

made the module, its dependencies, along with some

additional information to enable better searching

facilities.

Npm installs the modules from a common respository,

which contains more than 1800 modules.

N O T E W O R T H Y M O D U L E S

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

8 de 26 06/08/11 15:48

Express is probably the most used of all third-party

modules. It is a Sinatra clone and it is very good, just like

Sinatra.

// Create a server
var app = express.createServer();
app.listen(4000);

// Mount the root (/) and redirect to index
app.get('/', function(req, res) {
 res.redirect('/index.html');
});

// Handle a post to /quiz
app.post('/quiz', function(req, res) {
 res.send(quiz.create().id.toString());
});

Express uses Connect to handle middleware. Middleware

is like Rack but for Node (No wonder that Node is nice to

work with when it borrows its ideas from Ruby :)

connect(
 // Add a logger
 connect.logger()
 // Serve static file from the current directory
 , connect.static(__dirname)
 // Compile Sass and Coffescript files, on the fly
 , connect.compiler({enable: ['sass', 'coffeescript'
 // Profile all requests
 , connect.profiler()
).listen(3000);

Another popular library is Socket.IO. It handles the usual

socket variants, such as WebSocket, Comet, Flash

Sockets, etc...

var http = require('http');

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

9 de 26 06/08/11 15:48

var io = require('socket.io');

server = http.createServer(function(req, res
server.listen(80);

// socket.io attaches to an existing server
var socket = io.listen(server);
socket.on('connection', function(client){
 // new client is here!
 client.on('message', function(){ ... })
 client.on('disconnect', function(){ ... }
});

MySql has a library for Node.

client.query(
 'SELECT * FROM ' + TEST_TABLE,
 // Note the callback style
 function(err, results, fields) {
 if (err) { throw err; }

 console.log(results);
 console.log(fields);
 client.end();
 }
);

And Mongoose can be used for accessing MongoDB.

// Declare the schema
var Schema = mongoose.Schema
 , ObjectId = Schema.ObjectId;

var BlogPost = new Schema({
 author : ObjectId
 , title : String
 , body : String
 , date : Date
});

// Use it

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

10 de 26 06/08/11 15:48

var BlogPost = mongoose.model('BlogPost');

// Save
var post = new BlogPost();
post.author = 'Stravinsky';
instance.save(function (err) {
 //
});

// Find
BlogPost.find({}, function (err, docs) {
 // docs.forEach
});

T E M P L A T I N G E N G I N E S

Everytime a new platform makes its presence, it brings

along a couple of new templating languages and Node is

no different. Along with the popular ones from the Ruby

world, like Haml and Erb (EJS in Node), comes some

new ones like Jade and some browser templating

languages like Mustache and jQuery templates. I'll show

examples of Jade and Mu (Mustache for Node).

I like Jade, because it is a Javascript dialect of Haml and

it seems appropriate to use if I'm using Javascript on the

server side.

!!! 5
html(lang="en")
 head
 title= pageTitle
 script(type='text/javascript')
 if (foo) {
 bar()
 }
 body
 h1 Jade - node template engine
 #container
 - if (youAreUsingJade)

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

11 de 26 06/08/11 15:48

 p You are amazing
 - else
 p Get on it!

I'm not really sure if I like Mustache or not, but I can

surely see the value of having a templating language

which works both on the server side and in the browser.

<h1>{{header}}</h1>
{{#bug}}
{{/bug}}

{{#items}}
 {{#first}}
 {{name}}
 {{/first}}
 {{#link}}
 {{name}}
 {{/link}}
{{/items}}

{{#empty}}
 <p>The list is empty.</p>
{{/empty}}

T E S T I N G

Node comes with assertions built in, and all testing

frameworks build on the Assert module, so it is good to

know.

assert.ok(value, [message]);
assert.equal(actual, expected, [message])
assert.notEqual(actual, expected, [message])
assert.deepEqual(actual, expected, [message
assert.strictEqual(actual, expected, [message
assert.throws(block, [error], [message])
assert.doesNotThrow(block, [error], [message
assert.ifError(value)
assert.fail(actual, expected, message, operator

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

12 de 26 06/08/11 15:48

// Example
// assert.throws(function, regexp)
assert.throws(
 function() { throw new Error("Wrong value"
 /value/
);

Apart from that there are at least 30 different testing

frameworks to use. I have chosen to use NodeUnit since I

find that it handles asynchronous testing well, and it has

a nice UTF-8 output that looks good in the terminal,

// ./test/test-doubled.js
var doubled = require('../lib/doubled');

// Exported functions are run by the test runner
exports['calculate'] = function (test) {
 test.equal(doubled.calculate(2), 4);
 test.done();
};

// An asynchronous test
exports['read a number'] = function (test)
 test.expect(1); // Make sure the assertion is run

 var ev = new events.EventEmitter();
 process.openStdin = function () { return
 process.exit = test.done;

 console.log = function (str) {
 test.equal(str, 'Doubled: 24');
 };

 doubled.read();
 ev.emit('data', '12');
};

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

13 de 26 06/08/11 15:48

D E P L O Y M E N T

There are already a lot of platforms providing Node as a

service (PaaS , Platform as a Service). Most of them are

using Heroku style deployment by pushing to a Git

remote. I'll show three alternatives that all provide free

Node hosting.

J O Y E N T (N O . D E)

Joyent, the employers of Ryan Dahl, give you ssh access

so that you can install the modules you need.

Deployment is done by pushing to a Git remote.

$ ssh node@my-machine.no.de
$ nmp install express
$ git remote add node node@andersjanmyr.no.
$ git push node master
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 321 bytes, done
Total 3 (delta 2), reused 0 (delta 0)
remote: Starting node v0.4.7...
remote: Successful
To node@andersjanmyr.no.de:repo
 8f59169..c1177b0 master -> master

N O D E S T E R

Nodester, gives you a command line tool, nodester, that

you use to install modules. Deployment by pushing to a

Git remote.

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

14 de 26 06/08/11 15:48

$ nodester npm install express
$ git push nodester master
Counting objects: 5, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 341 bytes, done
Total 3 (delta 2), reused 0 (delta 0)
remote: Syncing repo with chroot
remote: From /node/hosted_apps/andersjanmyr
remote: 38f4e6e..8f59169 master -> origin/master
remote: Updating 38f4e6e..8f59169
remote: Fast-forward
remote: Gemfile.lock | 10 ++++------
remote: 1 files changed, 4 insertions(+),
remote: Checking ./.git/hooks/post-receive
remote: Attempting to restart your app: 1346
remote: App restarted..
remote:
remote:
remote: \m/ Nodester out \m/
remote:
remote:
To ec2-user@nodester.com:/node/hosted_apps/andersjanmyr
 38f4e6e..8f59169 master -> master

C L O U D F O U N D R Y

Cloud Foundry is one of the most interesting platforms in

the cloud. It was genius by VM Ware to open source the

platform, allowing anyone to set up their own cloud if

they wish. If you don't want to setup your own Cloud

Foundry Cloud, you can use the service hosted at

cloundfoundry.com.

With Cloud Foundry, you install the modules locally and

then they are automatically deployed as part of the vmc

push. Push in this case does not mean git push, but

instead, copy all the files from my local machine to the

server.

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

15 de 26 06/08/11 15:48

$ npm install express # Install locally
mime@1.2.1 ./node_modules/express/node_modules/mime
connect@1.4.0 ./node_modules/express/node_modules/connect
qs@0.1.0 ./node_modules/express/node_modules/qs
express@2.3.0 ./node_modules/express

$ vmc push
Would you like to deploy from the current directory
Application Name: snake
Application Deployed URL: 'snake.cloudfoundry.com'
Detected a Node.js Application, is this correct
Memory Reservation [Default:64M] (64M, 128M
Creating Application: OK
Would you like to bind any services to 'snake'
Uploading Application:
 Checking for available resources: OK
 Packing application: OK
 Uploading (1K): OK
Push Status: OK
Staging Application: OK
Starting Application:OK

T O O L S

There are of course a bunch of tools that come with a new

platform, Jake, is a Javascript version of Rake, but I am

happy with Rake and I don't see the need to switch. But,

there are some tools that I cannot live without when

using Node.

R E L O A D E R S

If you use the vanilla node command then you have to

restart it every time you make a change to a file. That is

awfully annoying and there are already a number of

solutions to the problem.

Nodemon watches the files in your directory and reloads t
$ npm install nodemon
nodemon@0.3.2 ../node_modules/nodemon

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

16 de 26 06/08/11 15:48

$ nodemon server.js
30 Apr 08:21:23 - [nodemon] running server.
...
Saving the file
30 Apr 08:22:01 - [nodemon] restarting due to changes

Alternative
$ npm install supervisor
$ supervisor server.js
DEBUG: Watching directory '/evented-programming-with-nodejs

D E B U G G E R S

Another tool that it is hard to live without is a debugger.

Node comes with one built in. It has a gdb flavor to it and

it is kind of rough.

$ node debug server.js
debug> run
debugger listening on port 5858
connecting...ok
break in #<Socket> ./server.js:9
 debugger;

debug> p data.toString();
tapir

// Javascript
var echo = net.createServer(function(socket
 socket.on('data', function(data) {
 debugger; // <= break into debugger
 socket.write(data);
 });
});

If you want a GUI debugger, it is possible to use the one

that comes with Chrome by installing the

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

17 de 26 06/08/11 15:48

node-inspector. It is started similarly to the built in

debugger, but the --debug is an option instead of a

subcommand.

$ node-inspector &
visit http://0.0.0.0:8080/debug?port=5858 to start debuggin

$ node --debug server.js debugger listening on port

After that you can just fire up Chrome on the URL,

http://0.0.0.0:8080/debug?port=5858 and you can

debug the node process just as if it was running in the

browser.

I D I O M S

Idioms, patterns, techniques, call it what you like.

Javascript code is littered with callbacks, and event more

so with Node. Here are some tips on how to write good

asynchronous code with Node.

R E T U R N O N C A L L B A C K S

It is easy to forget to escape from the function after a

callback has been called. An easy way to remedy this

problem is to call return before every call to a callback.

Even though the value is never used by the caller, it is an

easy pattern to recognize and it prevents bugs.

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

18 de 26 06/08/11 15:48

function doSomething(response, callback) {
 doAsyncCall('tapir', function(err, result
 if (err) {
 // return on the callback
 return callback(err);
 }
 // return on the callback
 return callback(null, result);
 });
}

E X C E P T I O N S I N C A L L B A C K S

Exceptions that occur in callbacks cannot be handled the

way we are used to, since the context is different. The

solution to this is to pass along the exception as a

parameter to the callback. In Node the convetion is to

pass the error as the first parameter into the callback.

function insertIntoTable(row, function(err,
 if (err) return callback(err);
 ...

 // Everything is OK
 return callback(null, 'row inserted');
}

P A R A L L E L E X E C U T I O N

If you have multiple tasks that need to be finished before

you take some new action, this can be handled with a

simple counter. Here is an example of a simple function

that starts up a bunch of functions in parallel and waits

for all of them to finish before calling the callback.

// Do all in parallel
function doAll(collection, callback) {
 var left = collection.length;

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

19 de 26 06/08/11 15:48

 collection.forEach(function(fun) {
 fun(function() {
 if (--left == 0) callback();
 });
 });
};

// Use it
var result = [];
doAll([
 function(callback) {
 setTimeout(function() {result.push(1);
 function(callback) {
 setTimeout(function() {result.push(2);
 function(callback) {
 setTimeout(function() {result.push(3);
], function() { return result; }

// returns [3, 1, 2]

S E Q U E N T I A L E X E C U T I O N

Sometimes the ordering is important. Here is a simple

function that makes sure that the calls are executed in

sequence. It uses recursion to to make sure that the calls

are handled in the correct order. It also uses the Node

function process.nextTick() to prevent the stack from

getting to large for large collections. Similar results can

be obtained with setTimeout() in browser Javascript. It

can be seen as a simple trick to achieve tail recursion.

function doInSequence(collection, callback)
 var queue = collection.slice(0); // Duplicate

 function iterate() {
 if (queue.length === 0) return callback
 // Take the first element
 var fun = queue.splice(0, 1)[0];
 fun(function(err) {
 if (err) throw err;
 // Call it without building up the stack

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

20 de 26 06/08/11 15:48

 process.nextTick(iterate);
 });
 }
 iterate();
}

var result = [];
doInSequence([
 function(callback) {
 setTimeout(function() {result.push(1);
 function(callback) {
 setTimeout(function() {result.push(2);
 function(callback) {
 setTimeout(function() {result.push(3);
], function() { return result; });

// Returns [1, 2, 3]

L I B R A R Y S U P P O R T F O R A S Y N C H R O N O U S
P R O G R A M M I N G

If you don't want to write these functions yourself, there

are a few libraries that can help you out. I'll show two

version that I like.

F I B E R S

Fibers are also called co-routines. Fibers provide two

functions, suspend and resume, which allows us to write

code in a synchronous looking style. In the Node version

of fibers, node-fibers, suspend and resume are called

yield() and run() instead.

require('fibers');
var print = require('util').print;

function sleep(ms) {
 var fiber = Fiber.current;
 setTimeout(function() { fiber.run(); },
 yield();

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

21 de 26 06/08/11 15:48

}

Fiber(function() {
 print('wait... ' + new Date + '\n');
 sleep(1000);
 print('ok... ' + new Date + '\n');
}).run();
print('back in main\n');

Fibers are a very nice way of writing asynchronous code

but, in Node, they have one drawback. They are not

supported without patching the V8 virtual machine. The

patching is done when you install node-fibers and you

have to run the command node-fibers instead of node

to use it.

T H E A S Y N C L I B R A R Y

If you don't want to use the patched version of V8, I can

recommend the async library. Async provides around 20

functions that include the usual 'functional' suspects

(map, reduce, filter, forEach...) as well as some common

patterns for asynchronous flow control (parallel, series,

waterfall...). All these functions assume you follow the

Node convention of providing a single callback as the last

argument of your async function.

async.map(['file1','file2','file3'], fs.stat
 // results is now an array of stats for each file
});

async.filter(['file1','file2','file3'], path
 // results now equals an array of the existing files
});

async.parallel([
 function(){ ... },
 function(){ ... }
], callback);

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

22 de 26 06/08/11 15:48

async.series([
 function(){ ... },
 function(){ ... }
], callback);

C O N C L U S I O N

Node is definitely an interesting platform. The possibility

to have Javascript running through the whole stack, from

the browser all the way down into the database (if you

use something like CouchDB or MongoDB) really appeals

to me. The easy way to deploy code to multiple, different

cloud providers is also a good argument for Node.

POSTED BY ANDERS JANMYR AT 09:49

LABELS: JAVASCRIPT, NODE, NODEJS, TUTORIAL

1 5 C O M M E N T S :

Anonymous said...

Should the second 'req' in:

app.get('/', function(req, req) {

res.redirect('/index.html');

});

be 'res'?:

app.get('/', function(req, res) {

res.redirect('/index.html');

});

Great article though!

16 MAY, 2011 06:57

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

23 de 26 06/08/11 15:48

<a href="http://twitter.com

/#!/andersjanmyr">@andersjanmyr said...

Yes, you're right, fixed it, thanks!

16 MAY, 2011 08:33

Soludra Ar'thela said...

This post has been removed by the author.
16 MAY, 2011 10:30

Jonathan Castello said...

In the "EXCEPTIONS IN CALLBACKS" section,

you have "callback(err, data) { ... }". I think you

meant "function", not "callback".

Great article, I learned a few things about Node I

didn't already :)

16 MAY, 2011 10:32

Anders Janmyr said...

@Jonathan, thanks! I fixed it.

16 MAY, 2011 10:45

Adrian Quark said...

In the example on sequential execution, I think you

meant process.nextTick(iterate) instead of

process.nextTick(iterate()).

17 MAY, 2011 03:19

Anders Janmyr said...

@Adrian, you're right. Thanks!

17 MAY, 2011 06:44

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

24 de 26 06/08/11 15:48

jamuraa said...

Thanks for this post, it was very useful for me. I

don't think I 'got' node.js before this, because all

the tutorials that I had seen before now stopped

shortly after introducing npm and didn't go as far

as the whole stack.

17 MAY, 2011 13:46

Anders Janmyr said...

@jamuraa, I'm glad it helped you!

17 MAY, 2011 14:19

obowah said...

the mongoose example isn't async - should put the

find() call in the save() function callback. i think

20 MAY, 2011 21:19

Anders Janmyr said...

@obowah In this case it is meant as separate

examples and not as a sequence of instructions. If

it was you are correct!

21 MAY, 2011 12:12

VA said...

Best thing so far for me... Truly thanks

29 MAY, 2011 13:39

Anders Janmyr said...

@VA, I'm glad you liked it!

29 MAY, 2011 15:42

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

25 de 26 06/08/11 15:48

Newer Post Older Post

Post a Comment

L I N K S T O T H I S P O S T

Create a Link

Home

Subscribe to: Post Comments (Atom)

Andrew said...

Hey Anders,

This was a really good read. I particularly like the

examples at the end of how to write JS that is to

execute in series or parallel.

Node's biggest barrier to entry for non-functional

programmers is the shift to working with callbacks

and context.

More clear, practical examples like this will surely

demystify it for a lot of people.

Keep up the good work!

27 JULY, 2011 16:55

Anders Janmyr said...

@Andrew, thanks for the feedback, I'm glad you

liked it.

28 JULY, 2011 08:46

The Tapir's Tale: A Not Very Short Introduction To Node.js http://anders.janmyr.com/2011/05/not-very-short-introduction...

26 de 26 06/08/11 15:48

