UTN FRD — Sistemas
Operativos
Unidad VI Entrada - Salida

Categories of

/O Devices

 Difficult area of OS design

— Difficult to develop a consistent solution due
to a wide variety of devices and applications

 Three Categories:
— Human readable
— Machine readable
— Communications

Human readable

e Devices used to communicate with the
user

e Printers and terminals
— Video display
— Keyboard
— Mouse etc

Machine readable

e Used to communicate with electronic
equipment
— Disk drives
— USB keys
— Sensors
— Controllers
— Actuators

Communication

e Used to communicate with remote devices
— Digital line drivers
— Modems

Differences In
/O Devices

e Devices differ in a number of areas
— Data Rate
— Application
— Complexity of Control
— Unit of Transfer
— Data Representation
— Error Conditions

 May be
massive
difference
between the
data transfer
rates of
devices

Data Rate

Gigabit Ethernet | S S
Graphics displey | S
Hard st
Ethernet |
Optica it S S
Seanner |
Laser prioter | S
Floppy i |
e —
Mouse _
Keyboard _
101 102 103 104 105 106 10 108 108
Data Rate (bps)

Figure 11.1 Typical I/0 Device Data Rates

Application

— Disk used to store files requires file
management software

— Disk used to store virtual memory pages
needs special hardware and software to
support it

— Terminal used by system administrator may
have a higher priority

Complexity of control

* A printer requires a relatively simple
control interface.

* A disk iIs much more complex.

* This complexity is filtered to some extent
by the complexity of the I/O module that
controls the device.

Unit of transfer

e Data may be transferred as

— a stream of bytes or characters (e.g., terminal
1/O)

— or In larger blocks (e.g., disk 1/O).

Data representation

 Different data encoding schemes are used
by different devices,

— Including differences Iin character code and
parity conventions.

Error Conditions

 The nature of errors differ widely from one
device to another.

e Aspects include:
— the way in which they are reported,

— their consequences,
— the available range of responses

Technigues for
performing 1/O

 Programmed 1I/O
e Interrupt-driven I/O
* Direct memory access (DMA)

Table 11.1 I'O Techniques

No Interrupts

Use of Interrupts

L'O-to-memory transfer
through processor

Programmed 1/O

Intermupt-driven [/O

Direct 'O-to-memory
transfer

Direct memory access (DMA)

Evolution of the
/O Function

1. Processor directly controls a peripheral
device

2. Controller or I/O module Is added

— Processor uses programmed /O without
Interrupts

— Processor does not need to handle details of
external devices

Evolution of the
/O Function cont...

3. Controller or I/O module with interrupts

— Efficiency improves as processor does not
spend time waiting for an 1/O operation to be
performed

4. Direct Memory Access

— Blocks of data are moved into memory
without involving the processor

— Processor involved at beginning and end only

Evolution of the
/O Function cont...

5. 1/O module Is a separate processor

— CPU directs the I/O processor to execute an
/O program in main memory.

6. 1/O processor
— 1/0 module has its own local memory

— Commonly used to control communications
with interactive terminals

Direct Memory Address

 Processor delegates I/O J b
operation to the DMA [[ou
module i

« DMA module transfers data e
directly to or form memory s =

« When complete DMA e ;

module sends an interrupt
Slgnal to the processor Figure 11.2 Typical DMA Block Diagram

DMA Configurations:
Single Bus

(a) Single-bus, detached DMA

« DMA can be configured in several ways

e Shown here, all modules share the same
system bus

DMA Configurations:
Integrated DMA & 1/0O

Processor DMA DMA Memory

'O

IO 'O

(b) Single-bus, Integrated DMA-LI'O

e Direct Path between DMA and I/O modules
* This substantially cuts the required bus cycles

DMA Configurations:
/O Bus

System bus

DMA | \

[0 'O

(¢) I/O bus

I/O bus

I'O0

e Reduces the number of I/O Interfaces In the

DMA module

Goals: Efficiency

* Most I/O devices extremely slow
compared to main memory

e Use of multiprogramming allows for some
processes to be waiting on 1/O while
another process executes

 |/O cannot keep up with processor speed
— Swapping used to bring in ready processes
— But this is an I/O operation itself

Generality

* For simplicity and freedom from error it is
desirable to handle all I/O devices in a
uniform manner

e Hide most of the detalls of device I/O In
lower-level routines

 Difficult to completely generalize, but can
use a hierarchical modular design of I/O
functions

Hierarchical design

A hierarchical philosophy leads to
organizing an OS into layers

Each layer relies on the next lower layer to
nerform more primitive functions

t provides services to the next higher
ayer.

Changes in one layer should not require
changes in other layers

Device-Independent I/O Software

Operating system

IinJlonr, AR
rﬂmfuﬂw\w

Disk driver Printer driver Keyboard driver

(a)

(a) Without a standard driver interface

(2)

Operating system

|y iy
T I |y
IR | | B

(b)

(b) With a standard driver interface

Local peripheral device

= * Logical I/O:

— Deals with the device as a logical
resource

e Device I/O:

— Converts requested operations into
sequence of I/O instructions

Scheduling and Control

— Performs actual queuing and control
operations

(a) Local peripheral device

Communications Port

e Similar to previous but the logical
I/O module Is replaced by a
communications architecture,

— This consist of a number of layers.
— An example is TCP/IP,

File System

-— * Directory management

— Concerned with user operations
affecting files

* File System
— Logical structure and operations
* Physical organisation]

— Converts logical names to physical
addresses

/O Buffering

* Processes must walit for I/O to complete
before proceeding
— To avoid deadlock certain pages must remain

INn main memory during 1/O

It may be more efficient to perform input
transfers in advance of requests being
made and to perform output transfers
some time after the request is made.

Block-oriented Buffering

e Information is stored In fixed sized blocks

e Transfers are made a block at a time
— Can reference data b block number

o Used for disks and USB keys

Stream-Oriented
Buffering

o Transfer information as a stream of bytes

« Used for terminals, printers,
communication ports, mouse and other
pointing devices, and most other devices

that are not secondary storage

No Buffer

o Without a buffer, the OS directly access
the device as and when it needs

Operating System User Process

/O Device In { \l i > |

(a) No buffering

Single Buffer

* Operating system assigns a buffer in main
memory for an 1/O request

Operating System User Process

I/O Device In || > \l Move I > |

(b) Single buffering

Block Oriented
Single Buffer

Input transfers made to buffer
Block moved to user space when needed

The next block 1Is moved into the buffer
— Read ahead or Anticipated Input

Often a reasonable assumption as data Is
usually accessed sequentially

Stream-oriented
Single Buffer
* Line-at-time or Byte-at-a-time
 Terminals often deal with one line at a

time with carriage return signaling the end
of the line

e Byte-at-a-time suites devices where a
single keystroke may be significant

— Also sensors and controllers

Double Buffer

e Use two system buffers instead of one

e A process can transfer data to or from one
buffer while the operating system empties
or fills the other buffer

Operating System User Process

1/O Device In @ Move i > |

(¢) Double buffering

Circular Buffer

e More than two buffers are used

 Each individual buffer is one unit Iin a
circular buffer

e Used when 1I/O operation must keep up
with process

Operating System User Process

I/O Device In Move > |

(d) Circular buffering

Device-Independent I/O Software

User process

/

[Y
Use
20 1 @] | @

Kernel

space I:EI

Modem Modem
(a) (b)

(a) Unbuffered input
(b) Buffering in user space

(c) Buffering in the kernel followed by copying to user
space

(d) Double buffering in the kernel

Buffer Limitations

e Buffering smoothes out peaks in I/O

demand.

— But with enough demand eventually all buffers
become full and their advantage Is lost

 However, when there Is a variety of I1/O
and process activities to service, buffering
can increase the efficiency of the OS and
the performance of individual processes.

Disk Performance

Parameters

he actual details of disk I/O operation
depend on many things

— A general timing diagram of disk I/O transfer
IS shown here.

Wait for Wait for Seek Rotational Data
Device Channel Delay Transfer

ERRREERE R S | ——— I—

< Device Busy >

Figure 11.6 Timing of a Disk I/O Transfer

Positioning the
Read/Write Heads

 When the disk drive Is operating, the disk
IS rotating at constant speed.

* Track selection involves moving the head
In a movable-head system or electronically
selecting one head on a fixed-head
system.

Disk Performance

Parameters

e Access Time Is the sum of:

— Seek time: The time it takes to position the
head at the desired track

— Rotational delay or rotational latency: The
time its takes for the beginning of the sector to
reach the head

e Transfer Time iIs the time taken to transfer
the data.

Disk Scheduling
Policies

 TO compare various schemes, consider a
disk head is initially located at track 100.

—assume a disk with 200 tracks and that the
disk request queue has random requests In It.

e The requested tracks, in the order
received by the disk scheduler, are

— 55, 58, 39, 18, 90, 160, 150, 38, 184.

* Process request sequentially

First-in, first-out (FIFO)

e Fair to all processes

* Approaches random scheduling in

performance If there are many processes

0

25

50

75
100
125
150
175
199

track number

(a) FIFO

Time

....

Priority

Goal Is not to optimize disk use but to
meet other objectives

Short batch jobs may have higher priority
Provide good Iinteractive response time

Longer jobs may have to wait an
excessively long time

A poor policy for database systems

L ast-In, first-out

e Good for transaction processing systems

— The device Is given to the most recent user so
there should be little arm movement

* Possibility of starvation since a job may
never regain the head of the line

Shortest Service
Time First

o Select the disk I/O request that requires
the least movement of the disk arm from
ItS current position

* Always choose the minimum seek time

0

25
5 50
s
g 75
S 100
2 125
150

175

199 -
{(b) SSTF Time

SCAN

 Arm moves In one direction only, satisfying
all outstanding requests until it reaches the
last track in that direction then the
direction Is reversed

25

75
100
125
150
175
199 -

(¢) SCAN Time

track number

C-SCAN

* Restricts scanning to one direction only

 When the last track has been visited In
one direction, the arm Is returned to the
opposite end of the disk and the scan
begins again

0
.25
2 50
Z 75
£ 100
E 125
150
175
199 .
(d) C-SCAN Time

N-step-SCAN

e Segments the disk request gueue Into
subqueues of length N

e Subqueues are processed one at a time,
using SCAN

 New requests added to other queue when
gueue Is processed

FSCAN

e Two subgueues

 \When a scan begins, all of the requests
are in one of the queues, with the other
empty.

* All new requests are put into the other
gueue.

e Service of new requests is deferred until all of
the old requests have been processed.

Performance Compared

Comparison of Disk Scheduling Algorithms

(2) FIFO
{starting at track 100}

(b} SSTE
{starting at rack 100)

(c) SCAN

{starting at track 100, in the
direction of increasing track

(d) C-SCAN
{starting at track 100, in the
direction of increasing track

number} number}
Nextirack Nuomber of Nextirack Number of Next track Number of Nextirack Number of
accessed tracks accessed tracks accessed tracks accessed tracks
traversed traversed traversed traversed
55 45 o0 10 150 50 150 50
58 3 38 32 160 10 160 10
9 19 35 3 134 24 134 24
18 21 39 16 o0 94 18 166
= 1H] 72 38 1 58 32 38 20
160 70 18 20 55 3 3% 1
150 10 150 132 39 16 35 16
38 112 160 10 38 1 38 3
184 146 134 24 18 20 g0 32
Average seek 553 Average seek 275 Average seek 278 Average seek 358
length length length length

Table 11.3

Disk Scheduling
Algorithms

Disk Scheduling Algorithms

beginning of SCAN cycle

Name Description Remarks
Selection according to requestor
RSS Random scheduling For analysis and simulation
FIFO Frstin first out Fairest of them all
PRI Priority by process Control outside of disk queue management
LIFO Last in first out Maximize locality and resource utilization
Selection according to requested item
SSTF Shortest service time first High utilization, small queues
SCAN Back and forth over disk Better service distribution
C-SCAN One way with fast return Lower service variability
N-step-SCAN | SCAN of N records at a time Service guarantee
FSCAN N-step-SCAN with N = queue size at Load sensitive

Multiple Disks

e Disk I/O performance may be increased by
spreading the operation over multiple
read/write heads

— Or multiple disks

* Disk failures can be recovered if parity
Information is stored

RAID

Redundant Array of Independent Disks

Set of physical disk drives viewed by the
operating system as a single logical drive

Data are distributed across the physical
drives of an array

Redundant disk capacity Is used to store
parity information which provides
recoverability from disk failure

RAID 0 - Stripped

- - e S e

strip 0 strip 1 strip 2 strip 3
strip 4 strip 5 strip 6 strip 7
e 1 o] . — [P, —
strip 8 strip 9 strip 10 strip 11
] b] R o]
strip 12 strip 13 strip 14 strip 15

'h.________.a--'l p-..._____,_.--‘l ['h-.,_____,.-f‘l r-»...____d_.-----'I
1 I]]

ia) RAID 0 inon-redundant)

* Not a true RAID — no redundancy
 Disk failure is catastrophic
* Very fast due to parallel read/write

RAID 1 - Mirrored

 Redundancy through duplication instead of
parity.

 Read requests can made Iin parallel.

o Simple recovery from disk failure

ib) RAID 1 (mirrore

T T T Ty, i O ST
D ([O oy o o o TS
strip 0 strip 1 strip 2 strip 3 strip @ strip 1 strip 2 strip 3
P] e e] e P] P] e] T
strip 4 strip 5 strip 6 strip 7 strip 4 strip 5 strip 6 strip 7
P] s R P] e o e P
strip 8 sirip © strip 10 strip 11 strip 8 strip 9 strip 10 strip 11
Mo] P] P]
strip 12 sirip 13 strip 14 strip 15 strip 12 sirip 13 sirip 14 strip 15
P— P P [.‘--..____._,Fr'I P [[
1

RAID 2
(Using Hamming code)
o Synchronised disk rotation

e Data stripping Is used (extremely small)

« Hamming code used to correct single bit
errors and detect double-bit errors

i) RAID 2 (redundancy through Hamming code)

RAID 3
bit-interleaved parity

o Similar to RAID-2 but uses all parity bits
stored on a single drive

<7 T T T Ty AT T AT T
M M e M —]
bo by b b3 P(b)
e M — e]

(d) RAID 3 (bit-interleaved parity)

RAID 4
Block-level parity

* A bit-by-bit parity strip Is calculated across
corresponding strips on each data disk

 The parity bits are stored in the
corresponding strip on the parity disk.

S AT AT T e e
S S — S R
block 0 block 1 block 2 block 3 Pi0-3)

N— ~— ~— —
block 4 block 5 block 6 block 7 P(4-7)
e ~— — — ~—
block 8 block 9 block 10 block 11 P(8-11)
M ~— —] —
block 12 block 13 block 14 block 15 P(12-15)

|"--..._______'_____...--"'!
|

(e) RAID 4 (block-level parity)

Ih"“'-—._______.—-""!
|

|.‘'''"--—._____'___.---""II
|

I.‘“'‘-—--____,__--—-"""FI
|

RAID 5
Block-level Distributed parity

o Similar to RAID-4 but distributing the parity
bits across all drives

T T T T T T T T,
block 0 block 1 block 2 block 3 P(0-3)
block 4 block 5 block 6 P(4-7) block 7

— — S A S
block 8 block 9 P(8-11) block 10 block 11
block 12 P(12-15) block 13 block 14 block 15

P(16-19) block 16 block 17 block 18 block 19
|‘'‘''--.._________..---"“"E |'''“---._________..---""E |''“'--..__________.--""I

. -

- — me

-
- — =

(f) RAID 5 (block-level distributed parity)

-

Eh""'--.___.--"""

- — we

carried out
— stored In separate blocks on different disks.

« Can recover from two disks failing

T
"-._____________.:-"

block 0
I
block 4
I‘-""---___---""-."'lI

block 8
"'\--..___________.-“

block 12
II"""-—-—.__.____--"‘"'!

-
-

- o -

(g) RAID 6 (dual redundancy)

e
II""----_____----""‘I

block 1
A

black 5
I‘'\--.._____________.-"'

block 9
~— A

P(12-15)
~——

= s oam e

-
-

RAID 6
Dual Redundancy

T
]

block 2
""h-..__________,.--""

block 6
]

P(8-11)
——]

Q(12-15)
—

1
L

= am e

-
-

A~
]

block 3
]
Pi4-7)
]
Q(8-11)
""-..__________,..--"'

block 13
M

| [
L [

-
- oam e

wo different parity calculations are

T T
—]

P(0-3)
l.“""--—_—---".P"I
Qi4-7)
N

block 10
— A

block 14
N~

- am =

—
H"‘--_____--"J

Q(0-3)
]
block 7
~—

block 11
"--..__________...--"

block 15
e~

e am = T

Unidad VI Entrada — Salida
Dispositivos Unix — Linux

Devices are Flles

e Each I/O device Is associated with a
special file
— Managed by the file system
— Provides a clean uniform interface to users
and processes.

e To access a device, read and write
requests are made for the special file
assoclated with the device.

UNIX SVR4 1/O

 Each individual device Is associated with a
special file

 Two types of I/O
— Buffered

— Unbuffered L—HB“‘“’"C““""

Character Block

Device Drivers

File Subsystem

Figure 11.12 UNIX I/O Structure

Buffer Cache

hree lists are

m a'l n tal n e d Hash Table Buffer Cache .E

Hash Pointers

— Free List -
- DeVi(-\'e LiSt Dﬂ'ice#,Blncl;#———i

— Driver 1/0 Queue

Free List

Pointer

Figure 11.13 UNIX Buffer Cache Organization

Character Cache

 Used by character oriented devices
— E.g. terminals and printers

 Either written by the 1/O device and read
by the process or vice versa

— Producer/consumer model used

Unbuffered I/O

 Unbuffered I/O is simply DMA between
device and process
— Fastest method

— Process is locked in main memory and can’t
pe swapped out

— Device Is tied to process and unavailable for
other processes

/O for Device Types

Table 11.5 Device 'O mn UNIX

Unbuffered 1/O Buffer Cache Character Queune
Disk drive X X
Tape drive X X
Terminals X
Communication lines X
Printers X X

Linux/Unix Similarities

* Linux and Unix (e.g. SVR4) are very
similar in I/O terms

— The Linux kernel associates a special file with
each I/O device driver.

— Block, character, and network devices are
recognized.

Character Oriented Terminals
RS-232 Terminal Hardware

Computer
RS-232
CPU Memor interface '

y UART Transmit

V'4

=
Recieve
Bus

An RS-232 terminal communicates with computer 1 bit at a
time

Called a serial line — bits go out in series, 1 bit at a time
Windows uses COM1 and COM2 ports, first to serial lines

Computer and terminal are completely independent

Input Software (2)

Character | POSIX name Comment

CTRL-H ERASE Backspace one character
CTRL-U KILL Erase entire line being typed
CTRL-V LNEXT Interpret next character literally
CTRL-S STOP Stop output

CTRL-Q START Start output

DEL INTR Interrupt process (SIGINT)
CTRL-\ QUIT Force core dump (SIGQUIT)
CTRL-D EOF End of file

CTRL-M CR Carriage return (unchangeable)
CTRL-J NL Linefeed (unchangeable)

Characters handled specially in canonical mode

Unidad VI Entrada — Salida
TP Integrado send & receive
serial

