
UTN FRD – Sistemas
Operativos

Unidad VI Entrada - Salida

Categories of
I/O Devices

• Difficult area of OS design
– Difficult to develop a consistent solution due

to a wide variety of devices and applications

• Three Categories:
– Human readable
– Machine readable

– Communications

Human readable

• Devices used to communicate with the
user

• Printers and terminals
– Video display
– Keyboard

– Mouse etc

Machine readable

• Used to communicate with electronic
equipment
– Disk drives

– USB keys
– Sensors

– Controllers
– Actuators

Communication

• Used to communicate with remote devices
– Digital line drivers

– Modems

Differences in
I/O Devices

• Devices differ in a number of areas
– Data Rate

– Application
– Complexity of Control

– Unit of Transfer
– Data Representation

– Error Conditions

Data Rate

• May be
massive
difference
between the
data transfer
rates of
devices

Application

– Disk used to store files requires file
management software

– Disk used to store virtual memory pages
needs special hardware and software to
support it

– Terminal used by system administrator may
have a higher priority

Complexity of control

• A printer requires a relatively simple
control interface.

• A disk is much more complex.
• This complexity is filtered to some extent

by the complexity of the I/O module that
controls the device.

Unit of transfer

• Data may be transferred as
– a stream of bytes or characters (e.g., terminal

I/O)
– or in larger blocks (e.g., disk I/O).

Data representation

• Different data encoding schemes are used
by different devices,
– including differences in character code and

parity conventions.

Error Conditions

• The nature of errors differ widely from one
device to another.

• Aspects include:
– the way in which they are reported,
– their consequences,

– the available range of responses

Techniques for
performing I/O

• Programmed I/O
• Interrupt-driven I/O
• Direct memory access (DMA)

Evolution of the
I/O Function

1. Processor directly controls a peripheral
device

2. Controller or I/O module is added
– Processor uses programmed I/O without

interrupts
– Processor does not need to handle details of

external devices

Evolution of the
I/O Function cont…

3. Controller or I/O module with interrupts
– Efficiency improves as processor does not

spend time waiting for an I/O operation to be
performed

4. Direct Memory Access
– Blocks of data are moved into memory

without involving the processor
– Processor involved at beginning and end only

Evolution of the
I/O Function cont…

5. I/O module is a separate processor
– CPU directs the I/O processor to execute an

I/O program in main memory.

6. I/O processor
– I/O module has its own local memory

– Commonly used to control communications
with interactive terminals

Direct Memory Address

• Processor delegates I/O
operation to the DMA
module

• DMA module transfers data
directly to or form memory

• When complete DMA
module sends an interrupt
signal to the processor

DMA Configurations:
Single Bus

• DMA can be configured in several ways

• Shown here, all modules share the same
system bus

DMA Configurations:
Integrated DMA & I/O

• Direct Path between DMA and I/O modules

• This substantially cuts the required bus cycles

DMA Configurations:
I/O Bus

• Reduces the number of I/O interfaces in the
DMA module

Goals: Efficiency

• Most I/O devices extremely slow
compared to main memory

• Use of multiprogramming allows for some
processes to be waiting on I/O while
another process executes

• I/O cannot keep up with processor speed
– Swapping used to bring in ready processes
– But this is an I/O operation itself

Generality

• For simplicity and freedom from error it is
desirable to handle all I/O devices in a
uniform manner

• Hide most of the details of device I/O in
lower-level routines

• Difficult to completely generalize, but can
use a hierarchical modular design of I/O
functions

Hierarchical design

• A hierarchical philosophy leads to
organizing an OS into layers

• Each layer relies on the next lower layer to
perform more primitive functions

• It provides services to the next higher
layer.

• Changes in one layer should not require
changes in other layers

Device-Independent I/O Software
(2)

(a) Without a standard driver interface
(b) With a standard driver interface

Local peripheral device
• Logical I/O:

– Deals with the device as a logical
resource

• Device I/O:
– Converts requested operations into

sequence of I/O instructions
• Scheduling and Control

– Performs actual queuing and control
operations

Communications Port
• Similar to previous but the logical

I/O module is replaced by a
communications architecture,
– This consist of a number of layers.

– An example is TCP/IP,

File System

• Directory management
– Concerned with user operations

affecting files

• File System
– Logical structure and operations

• Physical organisation]
– Converts logical names to physical

addresses

I/O Buffering

• Processes must wait for I/O to complete
before proceeding
– To avoid deadlock certain pages must remain

in main memory during I/O

• It may be more efficient to perform input
transfers in advance of requests being
made and to perform output transfers
some time after the request is made.

Block-oriented Buffering

• Information is stored in fixed sized blocks
• Transfers are made a block at a time

– Can reference data b block number

• Used for disks and USB keys

Stream-Oriented
Buffering

• Transfer information as a stream of bytes
• Used for terminals, printers,

communication ports, mouse and other
pointing devices, and most other devices
that are not secondary storage

No Buffer

• Without a buffer, the OS directly access
the device as and when it needs

Single Buffer

• Operating system assigns a buffer in main
memory for an I/O request

Block Oriented
Single Buffer

• Input transfers made to buffer
• Block moved to user space when needed
• The next block is moved into the buffer

– Read ahead or Anticipated Input

• Often a reasonable assumption as data is
usually accessed sequentially

Stream-oriented
Single Buffer

• Line-at-time or Byte-at-a-time
• Terminals often deal with one line at a

time with carriage return signaling the end
of the line

• Byte-at-a-time suites devices where a
single keystroke may be significant
– Also sensors and controllers

Double Buffer

• Use two system buffers instead of one
• A process can transfer data to or from one

buffer while the operating system empties
or fills the other buffer

Circular Buffer

• More than two buffers are used
• Each individual buffer is one unit in a

circular buffer
• Used when I/O operation must keep up

with process

Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Buffering in the kernel followed by copying to user

space
(d) Double buffering in the kernel

Buffer Limitations

• Buffering smoothes out peaks in I/O
demand.
– But with enough demand eventually all buffers

become full and their advantage is lost

• However, when there is a variety of I/O
and process activities to service, buffering
can increase the efficiency of the OS and
the performance of individual processes.

Disk Performance
Parameters

• The actual details of disk I/O operation
depend on many things
– A general timing diagram of disk I/O transfer

is shown here.

Positioning the
Read/Write Heads

• When the disk drive is operating, the disk
is rotating at constant speed.

• Track selection involves moving the head
in a movable-head system or electronically
selecting one head on a fixed-head
system.

Disk Performance
Parameters

• Access Time is the sum of:
– Seek time: The time it takes to position the

head at the desired track
– Rotational delay or rotational latency: The

time its takes for the beginning of the sector to
reach the head

• Transfer Time is the time taken to transfer
the data.

Disk Scheduling
Policies

• To compare various schemes, consider a
disk head is initially located at track 100.
– assume a disk with 200 tracks and that the

disk request queue has random requests in it.

• The requested tracks, in the order
received by the disk scheduler, are
– 55, 58, 39, 18, 90, 160, 150, 38, 184.

First-in, first-out (FIFO)

• Process request sequentially
• Fair to all processes
• Approaches random scheduling in

performance if there are many processes

Priority

• Goal is not to optimize disk use but to
meet other objectives

• Short batch jobs may have higher priority
• Provide good interactive response time
• Longer jobs may have to wait an

excessively long time
• A poor policy for database systems

Last-in, first-out

• Good for transaction processing systems
– The device is given to the most recent user so

there should be little arm movement

• Possibility of starvation since a job may
never regain the head of the line

Shortest Service
Time First

• Select the disk I/O request that requires
the least movement of the disk arm from
its current position

• Always choose the minimum seek time

SCAN

• Arm moves in one direction only, satisfying
all outstanding requests until it reaches the
last track in that direction then the
direction is reversed

C-SCAN

• Restricts scanning to one direction only
• When the last track has been visited in

one direction, the arm is returned to the
opposite end of the disk and the scan
begins again

N-step-SCAN

• Segments the disk request queue into
subqueues of length N

• Subqueues are processed one at a time,
using SCAN

• New requests added to other queue when
queue is processed

FSCAN

• Two subqueues
• When a scan begins, all of the requests

are in one of the queues, with the other
empty.

• All new requests are put into the other
queue.
• Service of new requests is deferred until all of

the old requests have been processed.

Performance Compared

Comparison of Disk Scheduling Algorithms

Disk Scheduling
Algorithms

Multiple Disks

• Disk I/O performance may be increased by
spreading the operation over multiple
read/write heads
– Or multiple disks

• Disk failures can be recovered if parity
information is stored

RAID

• Redundant Array of Independent Disks
• Set of physical disk drives viewed by the

operating system as a single logical drive
• Data are distributed across the physical

drives of an array
• Redundant disk capacity is used to store

parity information which provides
recoverability from disk failure

RAID 0 - Stripped

• Not a true RAID – no redundancy
• Disk failure is catastrophic
• Very fast due to parallel read/write

RAID 1 - Mirrored

• Redundancy through duplication instead of
parity.

• Read requests can made in parallel.
• Simple recovery from disk failure

RAID 2
(Using Hamming code)

• Synchronised disk rotation
• Data stripping is used (extremely small)
• Hamming code used to correct single bit

errors and detect double-bit errors

RAID 3
bit-interleaved parity

• Similar to RAID-2 but uses all parity bits
stored on a single drive

RAID 4
Block-level parity

• A bit-by-bit parity strip is calculated across
corresponding strips on each data disk

• The parity bits are stored in the
corresponding strip on the parity disk.

RAID 5
Block-level Distributed parity

• Similar to RAID-4 but distributing the parity
bits across all drives

RAID 6
Dual Redundancy

• Two different parity calculations are
carried out
– stored in separate blocks on different disks.

• Can recover from two disks failing

Unidad VI Entrada – Salida
Dispositivos Unix – Linux

Devices are Files

• Each I/O device is associated with a
special file
– Managed by the file system

– Provides a clean uniform interface to users
and processes.

• To access a device, read and write
requests are made for the special file
associated with the device.

UNIX SVR4 I/O

• Each individual device is associated with a
special file

• Two types of I/O
– Buffered
– Unbuffered

Buffer Cache

• Three lists are
maintained
– Free List

– Device List
– Driver I/O Queue

Character Cache

• Used by character oriented devices
– E.g. terminals and printers

• Either written by the I/O device and read
by the process or vice versa
– Producer/consumer model used

Unbuffered I/O

• Unbuffered I/O is simply DMA between
device and process
– Fastest method

– Process is locked in main memory and can’t
be swapped out

– Device is tied to process and unavailable for
other processes

I/O for Device Types

Linux/Unix Similarities

• Linux and Unix (e.g. SVR4) are very
similar in I/O terms
– The Linux kernel associates a special file with

each I/O device driver.

– Block, character, and network devices are
recognized.

Character Oriented Terminals
RS-232 Terminal Hardware

• An RS-232 terminal communicates with computer 1 bit at a
time

• Called a serial line – bits go out in series, 1 bit at a time
• Windows uses COM1 and COM2 ports, first to serial lines
• Computer and terminal are completely independent

Input Software (2)

Characters handled specially in canonical mode

Unidad VI Entrada – Salida
TP Integrado send & receive

serial

