UTN FRD — Sistemas
Operativos
Unidad V Gestion de
Memoria

The need for memory
management

« Memory is cheap today, and getting
cheaper

— But applications are demanding more and
more memory, there Is never enough!

« Memory Management, involves swapping
blocks of data from secondary storage.
« Memory I/O Is slow compared to a CPU

— The OS must cleverly time the swapping to
maximise the CPU'’s efficiency

Memory Management

Memory needs to be allocated to ensure a
reasonable supply of ready processes to
consume available processor time

Memory Management
Requirements

Relocation

Protection

Sharing

Logical organisation
Physical organisation

Requirements: Relocation

 The programmer does not know where the
program will be placed in memory when it
IS executed,

— It may be swapped to disk and return to main
memory at a different location (relocated)

« Memory references must be translated to
the actual physical memory address

Memory Management
Terms

Table 7.1 Memory Management Terms

Frame Fixed-length block of main
memory.

Page Fixed-length block of data In
secondary memory (e.g. on disk).

Segment Variable-length block of data that
resides In secondary memory.

Addressing

Process control P>
. . Process Control Block
information Entry point
to program
Increasing
address
values

Current top
of stack

Branch

instruction

Reference
to data

Figure 7.1 Addressing Requirements for a Process

Requirements: Protection

* Processes should not be able to reference
memory locations In another process
without permission

e Impossible to check absolute addresses at
compile time

e Must be checked at run time

Requirements: Sharing

* Allow several processes to access the
same portion of memory

» Better to allow each process access to the

same copy of the program rather than
have their own separate copy

Requirements: Logical
Organization

Memory Is organized linearly (usually)

Programs are written in modules

— Modules can be written and compiled
iIndependently

Different degrees of protection given to
modules (read-only, execute-only)

Share modules among processes
Segmentation helps here

Requirements: Physical
Organization

e Cannot leave the programmer with the
responsibility to manage memory

« Memory available for a program plus its
data may be insufficient
— Overlaying allows various modules to be

assigned the same region of memory but is
time consuming to program

 Programmer does not know how much
space will be available

Partitioning

* An early method of managing memory
— Pre-virtual memory
— Not used much now

« But, it will clarify the later discussion of
virtual memory If we look first at
partitioning
— Virtual Memory has evolved from the

partitioning methods

Types of Partitioning

Fixed Partitioning

Dynamic Partitioning

Simple Paging

Simple Segmentation

Virtual Memory Paging
Virtual Memory Segmentation

Fixed Partitioning

Operating System
8M

* Equal-size partitions (see fig 7.3a)

BM

— Any process whose size Is less than

or equal to the partition size can be
loaded into an available partition
 The operating system can swap a

process out of a partition

M

— If none are In a ready or running
state

8M

M

(a) Equal-size partitions

Fixed Partitioning Problems

« A program may not fit in a partition.

— The programmer must design the program
with overlays

 Main memory use Is inefficient.

— Any program, no matter how small, occupies
an entire partition.

— This iIs results in internal fragmentation.

Solution — Unequal Size

Partitions

e Lessens both problems
— but doesn’t solve completely

* In Fig 7.3Db,

— Programs up to 16M can be
accommodated without overlay

— Smaller programs can be placed in
smaller partitions, reducing internal
fragmentation

ing System

8M

12M

16M

(b} Unegual-size partitions

Placement Algorithm

 Equal-size
— Placement is trivial (no options)
 Unequal-size
— Can assign each process to the smallest
partition within which it will fit
— Queue for each partition

— Processes are assigned in such a way as to
minimize wasted memory within a partition

New
Processes

Fixed Partitioning

JIIT—
IIITT—

IIIIT—
JIIITT—

LI

I

L] —

(a) One process quene per partition

Figure 7.3

Operating
System

Memory Assignment for Fixed Partitioning

New

—

Processes

Operating
System

(b) Single queune

Remaining Problems with
Fixed Partitions

 The number of active processes is limited
by the system

— |.E limited by the pre-determined number of

partitions

* A large number of very small process will
not use the space efficiently

— In either fixed or variable length partition
methods

Dynamic Partitioning

« Partitions are of variable length and
number

* Process is allocated exactly as much
memory as required

Dynamic Partitioning

Example
e External Fragmentation

» Memory external to all
processes Is fragmented
Empty (6M) e Can resolve using

compaction

Pl (€ — OS moves processes so
that they are contiguous

— Time consuming and
wastes CPU time

Empty (4M)

Refer to Figure 7.4

Dynamic Partitioning

o Operating system must decide which free
block to allocate to a process

e Best-fit algorithm

— Chooses the block that Is closest in size to the
request

— Worst performer overall

— Since smallest block Is found for process, the
smallest amount of fragmentation is left

— Memory compaction must be done more often

Dynamic Partitioning

e First-fit algorithm
— Scans memory form the beginning and

chooses the first available block that is large
enough

— Fastest

— May have many process loaded in the front
end of memory that must be searched over
when trying to find a free block

Dynamic Partitioning

o Next-fit
— Scans memory from the location of the last
placement

— More often allocate a block of memory at the
end of memory where the largest block is
found

— The largest block of memory Is broken up into
smaller blocks

— Compaction is required to obtain a large block
at the end of memory

Allocation

§M sM

M '
1M First Fit 1M

22M \—'
60

Best Fit
Last 180

allocated |
block (14M) M
SM SM
oM 60V

|:| Allecated black

|:| Free block

14M |:| Possible new allocation 140

Next Fit

JoM
20M

i) Before (b} After

Figure 7.5 Example Memory Configuration before
and after Allocation of 16-Mbyte Block

Buddy System

* Entire space available Is treated as a
single block of 2V

e If arequest of size s where 2Y1 <s <=2V
— entire block is allocated

« Otherwise block is split into two equal
buddies

— Process continues until smallest block greater
than or equal to s is generated

Example of Buddv Svstem

1 Mbyte block | 1M
Request 100K | A=128K | 128K | 256K | 512K
Request 240K | A= 128K | 128K B = 256K 512K
Request 64 K | A=128K [c-ox| 64K B = 256K 512K
Request 256 K [A=128K [c-ax[64K B = 256K D = 256K 256K
Release B | A=128K [c-si| 64K 256K D = 256K 256K
Release A | 128K [c=sik| 64K | 256K | D = 256K | 256K
Request 75 K | E=128K [c-o| 64K | 256K | D = 256K | 256K
Release C [E=128K| 128K 256K D = 256K 256K
Release E | 512K D = 256K 256K
Release D | 1M

Figure 7.6 Example of Buddy System

Tree Representation of
Buddy System

1M

S12ZK

256K

128K

64K

v h J h
A=128K |c=s+x[64K | 5 D=256 K

Figure 7.7 Tree Representation of Buddy System

Relocation

 \When program loaded into memory the

actual (absolute) memory locations are
determined

e A process may occupy different partitions
which means different absolute memory
locations during execution

— Swapping
— Compaction

Addresses

e Logical
— Reference to a memory location independent
of the current assignment of data to memory.

e Relative

— Address expressed as a location relative to
some known point.

 Physical or Absolute

— The absolute address or actual location In
main memory.

Relocation

Relative address

- Process Control Block
Base Register + —————————————————————— »
h
o Adder Program
Absolute
address
h 4
Bounds Register I—b Comparator - — — — -
| I
| ! |
| | |
| ' [
I I _____ _.‘
| v Diata
[Interrupt to
: operating system
|
I
|
I
| Stack
[
| (- s

Process image in
main memory

Figure 7.8 Hardware Support for Relocation

Registers Used during
Execution

 Base register
— Starting address for the process

 Bounds register
— Ending location of the process

 These values are set when the process is
loaded or when the process is swapped In

Registers Used during
Execution

* The value of the base reqister is added to
a relative address to produce an absolute
address

e The resulting address is compared with
the value in the bounds register

 If the address Is not within bounds, an
Interrupt is generated to the operating
system

Paging

« Partition memory into small equal fixed-
size chunks and divide each process into

the same size chunks
 The chunks of a process are called pages

 The chunks of memory are called frames

Paging

o Operating system maintains a page table
for each process

— Contains the frame location for each page In
the process

— Memory address consist of a page number
and offset within the page

Processes and Frames

krame Main memory
number

0 A.0
1 A.l
- A.2
3 A.3
4
s
6
7 C.0
S C.1
9 C.2

10 C.3

11

12

13

14 |

fad I = D
(I | D

Process A
page table

0
1| —
2

Process B
page table

0| 7

1| 8

20 9

3 10
Process C
page table

Page Table

|

5

13

6

14

11

i Cad ol = O

12

Process D
page table

Free frame

list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

Segmentation

* A program can be subdivided into
segments

— Segments may vary in length

— There is a maximum segment length
* Addressing consist of two parts

— a segment number and

— an offset

e Segmentation Is similar to dynamic
partitioning

User process

Logical Addresses

Logical address = Logical address =
Relative address = 1507 Page# = 1, Offset = 478 Segment# = 1, Offset = 752
(0000010111011110] (000001/0111011110| (0001/001011110000]
S
-
= 2
= 22
3 =
Z vl
= ® r~
E _ S
- T : - -
) = = =
t2
X A
_ &2
~l
g =
L & ‘4 = Z \
EE
{a) Partitioning = B (¢} Segmentation
\ - =0
£
S

(b) Paging
(page size = 1K)

Figure 7.11 Logical Addresses

Paging

16-bit logical address

6-bit page # 10-bit offset
b

of0|OfO|Of1|0f1|1f1]|Of1]1f1)1|0

.-—-—-Y--—‘—-—_A_._.._-—«—-.\/—-—‘—-—_.-/
I

o[ooo101
»1[000110
2011001
Process
page table il
P — A
0|0[0]|1[1(0]|0]1(1({1]|0]1

+

16-bit physical address
(a) Paging

Segmentation

16-bit logical address

< >
4-bit segment # 12-bit offset
< >4 »
0/0]0]1]0(0]1f0O]1f1f1|1f0]|0]0O]0
'L_._-—-—-Yv'—'-—-_.’*-_ — _—
Length Base l
0 [001011101110[0000010000000000
—» 1 [011110011110/001000000010000 =
Process segment table
— — —
0[0]1]0]0]0OJ1]1[0|0OfOf1]|0f0]0O]O
< >

16-bit physical address
(b) Segmentation

Figure 7.12 Examples of Logical-to-Physical Address Translation

Unidad V Gestion de Memoria
Memoria Virtual

Terminology

able 8.1 Virtual Memory Terminology

Virtual memory

A storage allocation scheme in which secondary memory can be addressed as though
it were part of main memory. The addresses a program may use to reference mem-
ory are distinguished from the addresses the memory system uses to identify physi-
cal storage sites, and program-generated addresses are translated automatically to
the corresponding machine addresses. The size of virtual storage is limited by the ad-
dressing scheme of the computer system and by the amount of secondary memory
available and not by the actual number of main storage locations,

Virtoal address

The address assigned to a location in virtual memory to allow that location to be ac-
cessed as though it were part of main memory.

Virtual address space

The virtual storage assigned to a process.

Address space

The range of memory addresses available to a process.

Real address

The address of a storage location in main memory.

Key points In
Memory Management

1) Memory references are logical addresses
dynamically translated into physical
addresses at run time

— A process may be swapped in and out of
main memory occupying different regions at
different times during execution

2) A process may be broken up into pieces
that do not need to located contiguously In
main memory

Breakthrough In
Memory Management

e |f both of those two characteristics are
present,

—then It Is not necessary that all of the pages or
all of the segments of a process be in main
memory during execution.

 If the next instruction, and the next data
ocation are in memory then execution can
oroceed

— at least for a time

Execution of a Process

Operating system brings into main
memory a few pieces of the program

Resident set - portion of process that is In
main memory

An interrupt Is generated when an address
IS needed that is not in main memory

Operating system places the process in a
blocking state

Execution of a Process

* Plece of process that contains the logical
address Is brought into main memory

— Operating system issues a disk I/O Read
request

— Another process is dispatched to run while the
disk 1/O takes place

— An Interrupt Is issued when disk I/O complete
which causes the operating system to place
the affected process in the Ready state

Implications of

this new strategy

 More processes may be maintained In
main memory

— Only load in some of the pieces of each
process

— With so many processes in main memory, it is
very likely a process will be in the Ready state

at any particular time

e A process may be larger than all of main
memory

Real and

Virtual Memory

 Real memory
— Main memory, the actual RAM

 Virtual memory
— Memory on disk

— Allows for effective multiprogramming and
relieves the user of tight constraints of main
memory

Thrashing

* A state in which the system spends most
of its time swapping pieces rather than
executing Instructions.

e To avoid this, the operating system tries to

guess which pieces are least likely to be used In
the near future.

 The guess Is based on recent history

Principle of Locality

Program and data references within a
process tend to cluster

Only a few pieces of a process will be
needed over a short period of time

herefore it Is possible to make intelligent
guesses about which pieces will be
needed In the future

This suggests that virtual memory may
work efficiently

A Processes Performance
INn VM Environment

00 S R - W“ Note that during
‘ L the lifetime of the
process,
references are
confined to a
subset of pages.

i , ¥ i
' r ! W i 1 i
i | e
Wi (5 i
i 1 i '-\.:I| T -I iy ILE. 'y L
II| ; i " I T o
L o

1
| i :_| IHEHHIE .
T Rl i _!J|::I| i
il Hik " g il
. IR —
I
k] = I oan s i
L il
L]]

—————

Fignre 8.1 Paging Behavior

Support Needed for
Virtual Memory

e Hardware must support paging and
segmentation

* Operating system must be able to manage
the movement of pages and/or segments
between secondary memory and main
memory

Paging

 Each process has its own page table

 Each page table entry contains the frame
number of the corresponding page in main
memory

 Two extra bits are needed to indicate:
— whether the page is in main memory or not

— Whether the contents of the page has been
altered since it was last loaded

(see next slide)

Paging Table

Virtual Address

Page Table Entry

Pt Conma Bi] Frame Nomber

(a) Paging only

Virtual Memory
Paging (1)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU =
/ Memory M Disk
_ management emory controller
unit
'\ l l Bus

N

The MMU sends physical
addresses to the memory

The position and function of the MMU

Paging (2)

The relation between
virtual addresses
and physical
memory addres-
ses given by
page table

Virtual
address
space

B0K-64K
56K-60K
52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

} Virtual page

N|=][O|O]|R|W[IX|X|X|O]|X|N|X|X|X]|X

N

Physical
memory
address

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K

}\OK-4K

Page frame

Address Translation

|
1
Virtual Address : Physical Address |
Page # | Offset [Frame #| Offset

I F 3
]
|
i Register

n hits | Page Table Ptr
1
|
] Page Table n bits
] F
. =
. r:.\:{/ &
1 Yy | Frame #
1
|
|
|
1
|

Program " Paging Mechanism

|

Figure 8.3 Address Translation in a Paging System

fos.etI

B
Ll

o

3
Page
Frame

-

Main Memory

Page Tables

 Page tables are also stored in virtual
memory

 \When a process Is running, part of its
page table Is In main memory

Two-Level

Hierarchical Page Table

4-kbyte root
page table

4-Mbyte user [

page table

4-Gbyte user [

address space

Figure 8.4 A Two-Level Hierarchical Page Table

Address Translation for
Hierarchical page table

| |
| |
Virtual Address i 1

| 2 |

10 bits | 10 bits | 12 bits |y Frame # Offset |
| 1 |
N I)
i |
| = |

oot page
1 table ptr 1
| |
| |
| |
i 1)
I | , Page
] il ¥] " Frame
s RN R m - j
| |
| |
| |
1 4-kbyte page 1
| table (contains |
Root page table ;
I (contains 1024 PTEs) 1024 PTEs) 1 "
| |
| |
Program . Paging Mechanism i Main Memory

| |

Figure 8.5 Address Translation in a Two-Level Paging System

Page tables

grow proportionally

* A drawback of the type of page tables just
discussed Is that their size Is proportional
to that of the virtual address space.

* An alternative Is Inverted Page Tables

Inverted Page Table

Used on PowerPC, UltraSPARC, and IA-
64 architecture

Page number portion of a virtual address
IS mapped into a hash value

Hash value points to inverted page table

Fixed proportion of real memory Is
required for the tables regardless of the
number of processes

Inverted Page Table

Each entry in the page table includes:
 Page number

e Process identifier
— The process that owns this page.

e Control bits

— Includes flags, such as valid, referenced, etc
e Chalin pointer

— the index value of the next entry in the chain.

Inverted Page Table

Virtual Address

n bits
Page # | Offset
Control
n bits bits
Process
hash m bits Page # ID Chain
function 0
> N
J
Y
2_1 [Frame #| Offset
m bits
Inverted Page Table Real Address

{one entry for each
physical memory frame)

Figure 8.6 Inverted Page Table Structure

Translation Lookaside
Buffer

e Each virtual memory reference can cause
two physical memory accesses
— One to fetch the page table
— One to fetch the data

e To overcome this problem a high-speed
cache Is set up for page table entries

— Called a Translation Lookaside Buffer (TLB)

— Contains page table entries that have been
most recently used

TLB Operation

e Gliven a virtual address,
— processor examines the TLB

 If page table entry Is present (TLB hit),
— the frame number is retrieved and the real
address Is formed
 If page table entry is not found in the TLB
(TLB miss),

— the page number Is used to index the process
page table

Looking into the
Process Page Table

* First checks If page Is already In main
memory
— If not In main memory a page fault is issued
 The TLB Is updated to include the new
page entry

Translation Lookaside

Virtual Address

Page # | Offset

Buffer

Translation
Lookaside Buffer

TLE hit

YYYYYYY

TLE miss

Page Table

Page fault

v ¥

¥

Main Memory

Dﬂ'setI

WA

Frame #

Offset

Real Address

Load
page

Secondary
Memory

WA

—

Figure 8.7 Use of a Translation Lookaside Buffer

TLB operation

Faulted Instruction [
CPU checks the TLE

Page Tahle
Entry in
TLE?

Page Fault
Handling Routine

Apcess Page Table

05 Instructs CPU
to Read the Page
from Disk

CPU Activates

I'O Hardware [z L

|

CPU Generates
Fhysical Address

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: Page Transferred
: from Disk to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Main Memory

¥

No Perform Page
Replacement

Page Tables
Updated

Figure 8.8 Owperation of Paging and Translation Lookaside Buffer (TLB) [FURHS7]

Page Size

 Smaller page size, less amount of internal
fragmentation

 But Smaller page size, more pages
required per process

— More pages per process means larger page
tables

e Larger page tables means large portion of
page tables in virtual memory

Page Size

e Secondary memory Is designed to
efficiently transfer large blocks of data so a
large page size Is better

Further complications

to Page Size

 Small page size, large number of pages
will be found in main memory

e As time goes on during execution, the
pages in memory will all contain portions
of the process near recent references.
Page faults low.

* Increased page size causes pages to
contain locations further from any recent
reference. Page faults rise.

Example Page Size

Table 8.3 Example Page Sizes

Segmentation

o Segmentation allows the programmer to
view memory as consisting of multiple
address spaces or segments.

— May be unequal, dynamic size
— Simplifies handling of growing data structures

— Allows programs to be altered and recompiled
iIndependently

— Lends itself to sharing data among processes
— Lends itself to protection

Segment Organization

Starting address corresponding segment
IN main memory

Each entry contains the length of the
segment

A bit Is needed to determine If segment Is
already In main memory

Another bit Is needed to determine if the
segment has been modified since it was
loaded In main memory

Segment Table Entries

Virtual Address
s
Segment Table Entry

o e T T

(b) Segmentation only

Address Translation in
Segmentation

Virtual Address Segment Table

Seg # Offset =d —* + Base +d

Register

Seg Table Pir

Segment Table d

k4

— ;

|Length [Base

\/\

Program Segmentation Mechanism Main Memory

Figure 8.12 Address Translation in a Segmentation System

Segment

Combined Paging and
Segmentation

 Paging Is transparent to the programmer
e Segmentation is visible to the programmer

 Each segment is broken into fixed-size
pages

Combined Paging and
Segmentation

Virtual Address

I Segment Number Page Number Offset I
Segment Table Entry
I Control Bits Length Segment Base I

Page Table Entry

IP Mt}ﬂ"lfr Control Bits

Frame Number

P= present bit
M = Modified bit

(¢) Combined segmentation and paging

Address Translation

[| [|
| |

Virtual Address i i
[| [| :

Seg# | Page # | Offset | g B Frame #| Offset
| | 1
]]
i i
[| [|
0 |Seg Table Pir |
| |
i Segment i Page
i Table i Table
N N -
| | 5
|] h 4 Ay
| -D—'
[| [|
| |
| |
[| [|
[| [|
[| [|
| |
Program . Segmentation ¥ Paging

[| ; . [| ; .
. Mechanism . Mechanism

fos.etI

w

\/\

Page
Frame

-

Main Memory

Figure 8.13 Address Translation in a Segmentation/Paging System

Protection and sharing

o Segmentation lends itself to the
Implementation of protection and sharing
policies.

* As each entry has a base address and
length, inadvertent memory access can be
controlled

e Sharing can be achieved by segments
referencing multiple processes

Protection Relationships

Address N ain Memor v

0
WK .
Dispatcher
35K No access
allowed
S0K
Process A
K
WK Branch instruction
inot allowed)
Process B - *
_data (allowed)

140K

Process C

SER Reference to
data (not allowed)

A
X

190K

Figure 8.14 Protection Relationships Between Segments

Memory Management
Decisions

* Whether or not to use virtual memory
techniques

» The use of paging or segmentation or both

 The algorithms employed for various
aspects of memory management

Key Design Elements

Table 8.4 Operating Svstem Policies for Virtual Memory

Fetch Folicy Hesident Set Munagement
D:m!-m.d Resident st size
FACpRg g Fixed

Placement Policy Vurebl=

Replacement Policy Heplecement Scope

e Globel
HI:-Ji:I-.. -f'; garithms I cal

Optimel

Lesst recently used {LRLY) Cleaning Policy

First-in-first-out (FIFO) Dremand

Clock Precleaning

Pagebuffernng
Load Control

Degres of multiprogremming

Key aim: Minimise page faults
— No definitive best policy

Fetch Policy

 Determines when a page should be
brought into memory

 Two main types:
— Demand Paging
— Prepaging

Demand Paging
and Prepaging

« Demand paging
— only brings pages into main memory when a
reference is made to a location on the page
— Many page faults when process first started
 Prepaging
— brings In more pages than needed

— More efficient to bring in pages that reside
contiguously on the disk

— Don't confuse with “swapping”

Placement Policy

 Determines where in real memory a
process piece Is to reside

e Important in a segmentation system

* Paging or combined paging with
segmentation hardware performs address
translation

Replacement Policy

 When all of the frames In main memory
are occupied and it Is necessary to bring in
a new page, the replacement policy
determines which page currently in
memory Is to be replaced.

But...

* Which page Is replaced?

 Page removed should be the page least
likely to be referenced in the near future
— How Is that determined?
— Principal of locality again

* Most policies predict the future behavior
on the basis of past behavior

Replacement Policy: N
Frame Locking

 Frame Locking
— If frame Is locked, it may not be replaced
— Kernel of the operating system
— Key control structures
— 1/O buffers
— Assoclate a lock bit with each frame

Basic Replacement
Algorithms

* There are certain basic algorithms that are
used for the selection of a page to replace,
they include

— Optimal
— Least recently used (LRU)
— First-in-first-out (FIFO)
— Clock
 Examples

Examples

 An example of the implementation of these
policies will use a page address stream
formed by executing the program Is

—-232152453252

* \Which means that the first page
referenced Is 2,

— the second page referenced is 3,
— And so on.

Optimal policy

« Selects for replacement that page for
which the time to the next reference Is the
longest

 But Impossible to have perfect knowledge
of future events

Optimal Policy
Example

Page address

gream I = z 4
2 7 2 7 2 3
OPFT 3 3 3 3 3 3 E 3 |
] 5 5 5 '
F F ;

F= page tault cccwring after ithe frame allocation is imitially filled

Figure 8.15 Behavior of Four Page Replacement .-ilpurilhm.'-;

 The optimal policy produces three page
faults after the frame allocation has been
filled.

Least Recently
Used (LRU)

* Replaces the page that has not been
referenced for the longest time

* By the principle of locality, this should be
the page least likely to be referenced In
the near future

 Difficult to implement

— One approach is to tag each page with the
time of last reference.

— This requires a great deal of overhead.

LRU Example

Page address

Hream I 4
3 7 3 3 3 2 3 3 3
LRU B B BRIl PRl Bl B G5 5
| | | 3 3 3
; F F F

F= page fault occurring after the framee allozation 15 rmatally Filled

Figure 8,15 Behavior of Four Page Replacement Algorithms

 The LRU policy does nearly as well as the
optimal policy.
— In this example, there are four page faults

First-in, first-out (FIFO)

e Treats page frames allocated to a process
as a circular buffer

e Pages are removed in round-robin style
— Simplest replacement policy to implement

 Page that has been in memory the longest
IS replaced

— But, these pages may be needed again very
soon If it hasn’t truly fallen out of use

FIFO Example

I 5 2 -

Page address
stream

7 7] 3 3 B = = 5 3

FIFO 3] 3 |] 2 2 3 2
| | | E) F) 4

F F

F 2

.r...E|-| |ui

F= page tauli occwrring atier the frame allacation is imitially filled

Figure H.15 Behavior of Four Page Replacement Algorithms

 The FIFO policy results in six page faults.

— Note that LRU recognizes that pages 2 and 5
are referenced more frequently than other
pages, whereas FIFO does not.

Clock Policy L

Uses and additional bit called a “use bit”

When a page Is first loaded in memory or
referenced, the use bitis setto 1

When it Is time to replace a page, the OS
scans the set flipping all 1'sto O

The first frame encountered with the use
bit already set to O Is replaced.

Clock Policy Example

Page address
gream ! 4
2 - 2% || 2% ¢ | [5% |s] 5% | &3 3 3® b 3% e 3=
CLOCK — I 3 3* | 3 P o 2% Ll T Lajow i3 7.
Ll e i 1 e 1 3* g 3 4 5F 5w
F F

F F F

F= page fault occurring after ihe frame allocatiom is inatially filled

Figure 815 Behavior of Four Page Replacement Algorithms

* Note that the clock policy is adept at
protecting frames 2 and 5 from
replacement.

First frame in

y circular buffer of
frames that are
candidates for replacement

Clock Polic

n-1

next frame
pointer

(a) State of buffer just prior to a page replacement

Clock Policy

n-1 0

(b) State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation

Clock Policy

First frame in
circular buffer
for this process

n-1 0

Page 7 Page 9
Cd acrn;essed not accessed 1
recently; i
- recently; -
modified | | gifieq /e

not accessed
recently;
not modified

Page 05
accessed
recently;
not modified

Page 13
not accessed

recently;
not modified

Page 06
accessed
recently;
not modified

Page 47
not accessed
recently;

not modified

3 Last
replaced

Next
replaced

Page 97
not accessed
recently;

Page 46
not accessed

recently; Page 45 o
modified J/ Page 121 accge_ssed modified
accessed recently; -1

recently;
not modified

not modified

Figure 8.18 The Clock Page-Replacement Algorithm [GOLDS9]

Combined Examples

Page address

A 2 3 2 1 5 2 4 5 3 2 5 2
z N e e e 4 E = |2
OPT 3 3 3 3 3 3 5] 3
1 5 5 5 5 5 5 5
F F F
: 2 2 2 2 2 2 2] 3 3
LRU E] El E] 5 5 EH -1l Q= =
1 1 1 4 4 4 2 3 2
F F F F
2 x 2 5 T 3
FIFO 3 3 2 2 5 EE
[] 1 1 4 4 4 4 4 2
F F 4 F F F
7] [A) ELN e
CLOCK - 3* e ol e LE | 2% | (29
— e I i 4+ 4* 4 4 BN E
F F F F F

F= page favlt occurring after the Frame allecation is initially filled

Figure §.12 Behavior of Four Page Replacement Algorithms

Comparison

L d0A
g FIFO
E A5
< 39 CLOCK
=
S 25 LRU
= 20
Z 1 OPT
< 10
a 2
0 —>
6 8 10 12 14

Mumber of Frames Allocated

Figure 8.17 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

Page Buffering

 LRU and Clock policies both involve
complexity and overhead

— Also, replacing a modified page is more costly
than unmodified as needs written to
secondary memory

e Solution: Replaced page Is added to one
of two lists
— Free page list if page has not been modified
— Modified page list

Replacement Policy
and Cache Size

 Main memory size Is getting larger and the
locality of applications Is decreasing.

— S0, cache sizes have been increasing

 With large caches, replacement of pages
can have a performance impact
— Improve performance by supplementing the
page replacement policy with a with a policy
for page placement in the page buffer

Resident Set
Management

he OS must decide how many pages to
bring Into main memory
— The smaller the amount of memory allocated

to each process, the more processes that can
reside in memory.

— Small number of pages loaded increases
page faults.

— Beyond a certain size, further allocations of
pages will not affect the page fault rate.

Resident Set Size

 Fixed-allocation

— Glives a process a fixed number of pages
within which to execute

— When a page fault occurs, one of the pages of
that process must be replaced

o Variable-allocation

— Number of pages allocated to a process
varies over the lifetime of the process

Replacement Scope

he scope of a replacement strategy can
be categorized as global or local.

— Both types are activated by a page fault when
there are no free page frames.

— A local replacement policy chooses only
among the resident pages of the process that
generated the page fault

— A global replacement policy considers all
unlocked pages in main memory

Fixed Allocation,
Local Scope

 Decide ahead of time the amount of
allocation to give a process

e |Ifa
Nig
e |Ifa

location Is too small, there will be a
N page fault rate

location Is too large there will be too

few programs in main memory
— Increased processor idle time or
— Increased swapping.

Variable Allocation, Global
Scope
Easiest to Iimplement
— Adopted by many operating systems
Operating system keeps list of free frames

Free frame Is added to resident set of
process when a page fault occurs

If no free frame, replaces one from
another process

— Therein lies the difficulty ... which to replace.

Variable Allocation,
Local Scope

 \WWhen new process added, allocate
number of page frames based on

application type, program request, or other
criteria

 \When page fault occurs, select page from
among the resident set of the process that
suffers the fault

e Reevaluate allocation from time to time

Table .5

Fived Alloeation

Y arishle Allocatinn

Resident Set

Management Summary

Resident Set Management

Local Replacement

Global Replacement

» Number of frames allocated to process
m fixed,
» Page to be replaced 1schosen from

amang the fremes allocated to that
procsss:

process may be changed from time 1o
ime, to maintein the working set of
the process,

« Pepe ta be replaced is chosen from
anang Lthe frames ellocated to that

PraIcCEs.

» The number of fremes allocated to s

= Nol possible;

| = Page to be replaced ischosen from all
gveileble frames tn mein memary; this
ceuses the size of the resident set of
processes (0 VAry,

Cleaning Policy

* A cleaning policy is concerned with
determining when a modified page should
be written out to secondary memory.

 Demand cleaning

— A page Is written out only when it has been
selected for replacement

* Precleaning
— Pages are written out in batches

Cleaning Policy

Best approach uses page buffering

Replaced pages are placed in two lists
— Modified and unmodified

Pages in the modified list are periodically
written out in batches

Pages in the unmodified list are either
reclaimed If referenced again or lost when
Its frame Is assigned to another page

Load Control

 Determines the number of processes that
will be resident in main memory

— The multiprogramming level

 Too few processes, many occasions when
all processes will be blocked and much
time will be spent in swapping

 Too many processes will lead to thrashing

Processor Utilization

Multiprogramming

A

Multiprogramming Level

Figure 8.21 Multiprogramming Effects

Process Suspension

If the degree of multiprogramming Is to be
reduced, one or more of the currently
resident processes must be suspended

(swapped out).
Six possiblilities exist...

Suspension policies

* Lowest priority process

* Faulting process

— This process does not have its working set in
main memory so it will be blocked anyway

e Last process activated

— This process is least likely to have its working
set resident

Suspension policies cont.

e Process with smallest resident set

— This process requires the least future effort to
reload

e Largest process
— Obhtains the most free frames

* Process with the largest remaining
execution window

