UTN FRD — Sistemas
Operativos
Unidad IV Planificacion de
Procesos

Unidad IV Planificacion
Uniprocesador

Scheduling

 An OS must allocate resources amongst
competing processes.

 The resource provided by a processor Is
execution time

— The resource is allocated by means of a
schedule

Overall AIm
of Scheduling

he aim of processor scheduling is to
assign processes to be executed by the
processor over time,

—In a way that meets system objectives, such

as response time, throughput, and processor
efficiency.

Scheduling Objectives

he scheduling function should

— Share time fairly among processes
— Prevent starvation of a process

— Use the processor efficiently

— Have low overhead

— Prioritise processes when necessary (e.g. real
time deadlines)

Types of Scheduling

Table 9.1 Types of Scheduling

Long-term scheduling

Medium-term scheduling

Short-term scheduling

I/O scheduling

The decision to add to the pool of processes to be executed

The decision to add to the number of processes that are partiallv or
fully in main memory

The decision as to which available process will be executed by the
processor

The decision as to which process's pending I/O request shall be
handled by an available 1/O device

Long-Term Scheduling

 Determines which programs are admitted
to the system for processing
— May be first-come-first-served

— Or according to criteria such as priority, 1/0
requirements or expected execution time

e Controls the degree of multiprogramming

e More processes, smaller percentage of
time each process Is executed

Medium-Term
Scheduling

« Part of the swapping function

e Swapping-in decisions are based on the
need to manage the degree of
multiprogramming

Short-Term Scheduling

 Known as the dispatcher
e Executes most frequently

* Invoked when an event occurs
— Clock interrupts
— 1/O Interrupts
— Operating system calls
— Signals

Aim of Short
Term Scheduling

 Main objective is to allocate processor
time to optimize certain aspects of system

behaviour.
e A set of criteria Is needed to evaluate the
scheduling policy.

Short-Term Scheduling

Criteria: User vs System

e \WWe can differentiate between user and
system criteria

e User-oriented

— Response Time

» Elapsed time between the submission of a request
until there is output.

¢ System-oriented

— Effective and efficient utilization of the
processor

Short-Term Scheduling

Criteria: Performance

 \We could differentiate between

performance related criteria, and those
unrelated to performance

 Performance-related
— Quantitative, easily measured
— E.g. response time and throughput

* Non-performance related
— Qualitative
— Hard to measure

Interdependent
Scheduling Criteria

User Oriented, Performance Related

Turparound time This is the interval of ime between the submission of a process and its completion.
Includes actual execution time plus time spent waiting for resources, including the processor. This is an
appropriate measure for a batch job.

Response time For an interactive process, this is the ime from the submission of a request until the

response begins to be received. Often a process can begin producing some output to the user while
continuing to process therequest. Thus, thisis a better measure than turnaround time from the user's pont

of view. The scheduling discipline should attempt to achieve low response time and to maximize the
number of interactive users receiving acceptable response time.

Deadlines When process completion deadlines can be specified. the scheduling discipline should
subordinate other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should runin about the same amount of time and at about the same cost
regardless of the load onthe system. A wide variation in response time or turnaround time is distracting to
users. [t may signal a wide swing in svstem workloads or the need for system tuning to cure instabilities.

Interdependent
Scheduling Criteria cont.

Svstem Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed
per unit of ime. Thisis a measure of how much workis being performed. This clearlv depends on the
average length of a process but is also influenced by the scheduling policy, which may affect utilization.

Processorutilizatiom This is the percentage of time that the processor is busy. For an expensive shared
system, this is a significant criterion. In single-user systems and in some other systems, such as real-time
systems, this criterion is less important than some of the others.

System Oriented, Other

Fairness Inthe absence of guidance from the user or other svstem-supplied guidance, processes should
be treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor
higher-priority processes.

Balancing resources The scheduling policy should keep theresources of the svstem busy. Processes
that will underutilize stressed resources should be favored. This criterion alsoinvaolves medium-term and
long-term scheduling.

Priorities

e Scheduler will always choose a process of
higher priority over one of lower priority

 Have multiple ready queues to represent
each level of priority

Priority Queuing

Admit =

RQO

Dispatch
| Processor

RQ1

A

Release

ROQn

Preemption

Event
oCCurs

Event Wait

Blocked Queune

Figure 9.4 Priority Queuing

Starvation

e Problem:

— Lower-priority may suffer starvation if there is
a steady supply of high priority processes.

e Solution

— Allow a process to change Iits priority based
on Its age or execution history

Alternative Scheduling
Policies

Table 9.3 Characteristics of Various Scheduling Policies
A Round y e : ;
FCFS P SPN SRT HRRXN Feedback
robin
Selection) v mﬂx(w T 5) [
funciion maxw] constant min[s] minfs —e] 7 (see text)
Decision Non- Prf;r:ﬁljge Non- Preemptive Non- Prfa{iTiE:?E
mode pregmptive quarttum) preemplive {atarrival) preemplive e
Throughput Not May be lay High High High Not
; if fuantum A :
emphasized H emphasized
is too small
May be
high ; .
- cl;?aliv if Provides Provides
i good good Provides Provides
there is a ;
Response large Tesponse response good good Not
time : : time for time for FESponse response emphasized
variance in : :
short short time time
process i
; Processes processes
ey bhon
umes
Overhead Minimum Minimum Can be high Can be high Canbe high | Can be high
Penalizes
short : :
Effect on Processes; Fair Peaslizes Fenalecs Good balance h,laj a0
: long long O bound
Processes penalizes treatment iCARSAS BOCaasaR Srtoatas
KO bound proce: PrOCesses proces
processes
Starvation No No Possible Possible No Possibie

Selection Function

* Determines which process Is selected for
execution

 If based on execution characteristics then
Important quantities are:
e W = time spent in system so far, waiting
e e =time spent in execution so far

e s = total service time required by the process,
including e;

Decision Mode

o Specifies the instants In time at which the
selection function Is exercised.

 Two categories:
— Nonpreemptive
— Preemptive

Nonpreemptive vs
Premeptive

 Non-preemptive
— Once a process is In the running state, it will

continue until it terminates or blocks itself for
/0O

 Preemptive

— Currently running process may be interrupted
and moved to ready state by the OS

— Preemption may occur when new process
arrives, on an interrupt, or periodically.

Process Scheduling | ‘e

Example
° Examp|e set Of Table 9.4 Process Scheduling Example
prOCeSSGS, Process Arrval Time Service Time
consider eacha |—; “ z
batch job c p p
D b 5
E 8 2

— Service time represents total execution time

First-Come-
First-Served

 Each process joins the Ready gueue

* \When the current process ceases to
execute, the longest process in the Ready

gueue Is selected

0 S 10 15 20
el

.Y [A R (Y T N DN RN U N N NN AN S N R R B
First-Come-First B T 1 1 ' t 1 1 1 1 1 1 1 1 1
1 1 1 | | L1 1 1 1 1 1 1 1
Served (FCFS) R e e e
0 L L e

Dt + ¢ 0 0 0

T T D D R T R T T T

First-Come-
First-Served

* A short process may have to wait a very
long time before it can execute
 Favors CPU-bound processes

— 1/O processes have to wait until CPU-bound
process completes

Round Robin

o Uses preemption based on a clock
— also known as time slicing, because each

process is given a slice of time before being

preempted.
N o I A A R
Round-Robin B! | o o
(RR).q=1 Ci o L L
| 2 I T IO N E [[[
| e : Lo L

Round Robin

e Clock interrupt Is generated at periodic
Intervals

 \When an interrupt occurs, the currently
running process is placed in the ready
gueue

— Next ready job is selected

Effect of Size of
Preemption Time Quantum

Time
>

Process allocated Interaction
fime quantum complete

! !

<4 >4 >

Response time q-5
5

+ >
Quantum

q

(a) Time quantum greater than typical interaction

Effect of Size of
Preemption Time Quantum

Process allocated Process Process allocated Interaction
time quantum preempted time quantum complete
| : Vo
I |
< > g
q Other processes run
+ >

)

(b) Time quantum less than typical interaction

Figure 9.6 Effect of Size of Preemption Time Quantum

‘Virtual Round Robin’

Time-out

Ready Quene
Admit Dispatch Release
——— ——— P10CE550] | S

Auxiliary Queune

ol 'O 1 Wait
Ocenrs

/O 1 Quene

o2 /O 2 Wait
Ocenrs

/'O 2 Quene

'O R L/O n Wait
Ocenrs

'O n Queune

Figure 9.7 Queuing Diagram for Virtual Round-Robin Scheduler

Shortest Process Next

 Nonpreemptive policy
* Process with shortest expected processing
time is selected next

e Short process jumps ahead of longer
processes

, 1S N I N T R T NN AN [(R TR T SN S SRR SN SR S T
Shortest Process L O e T B A
Next (SPN) cll | AR
||||||||||| | | 1
D « v 0 0 0 0 00
E. 0 0 000 o

Shortest Process Next

* Predictability of longer processes Is
reduced

 If estimated time for process not correct,
the operating system may abort it

* Possibility of starvation for longer
processes

Shortest Remaining
Time
 Preemptive version of shortest process
next policy

* Must estimate processing time and choose
the shortest

Shortest Remaining

A
B |
Time (SRT) Cav 0 0
D
E

Highest Response
Ratio Next

 Choose next process with the greatest
ratio

time spent waiting + expected service time

Ratio = : ,
expected service time
|||||||||||||||||||||
A L
Highest Response Bi1 1 1 T T T T TR TR R T TR B
Ratio Next (HRRN) Ctr oo T A

Feedback Scheduling

RQO

» Penalize jobs that -~} g
have been running i
longer e T -

e Don'tknow e
remaining time .
process needs to N NEEE gl [
execute = mmmmmmmmmmmmmmmmmm

Figure 9.10 Feedback Scheduling

Release

Feedback Performance

o Variations exist, simple version pre-empts
periodically, similar to round robin

— But can lead to starvation

A
Feedback B 1 1 o : I I I
g=1 (ol :
D!t
E' + v o o v v 1 0!
|||||||||||||||||
||||||||||||||||
A L R e R B B N | | |
Feedback B | EEEEE
q=1 Ci & 1 L1 o !
D ||||||| 1 1
Ev o0 o0 0 0 0 0 , ST T

IIIIIIIIIIIIIIIIIIIII
0 < 10 15 20

Performance
Comparison

* Any scheduling discipline that chooses the
next item to be served independent of

service time obeys the relations

I, 1
T_c__]—p

where

nip:

I', = turnaround time or residence time; total time in system, waiting plus exe-

cution

I'; = average service time; average time spent in Running state

p = processor utilization

Unidad IV Planificacion
Multiprocesador

Classifications of
Multiprocessor Systems

* Loosely coupled processors,
— Each has their memory & I/O channels

* Functionally specialized processors
— Controlled by a master processor
— Such as I/O processor

 Tightly coupled multiprocessing

— Processors share main memory
— Controlled by operating system

Granularity

* Or frequency of synchronization, between
processes in a system.

* Five categories, differing in granularity:
— Independent Parallelism
— Coarse Parallelism
— Very Coarse-Grained Parallelism

— Medium-Grained Parallelism
— Fine-Grained Parallelism

Independent Parallelism

* No explicit synchronization among
processes

o Separate application or job
 Example Is time-sharing system

Coarse and Very
Coarse-Grained Parallelism

Synchronization among processes at a
very gross level

Good for concurrent processes running on
a multiprogrammed uniprocessor

— Can by supported on a multiprocessor with
little change

Medium-Grained
Parallelism

» Single application is a collection of threads

 Threads usually interact frequently,
affecting the performance of the entire
application

Fine-Grained
Parallelism

 Highly parallel applications
e Specialized and fragmented area

Synchronization
Granularity and Processes

Table 10.1 Synchronization Granularity and Processes

Ly, - Synchronization Interval
Grain Size Descripfion Qasirachon:)

Fine Parallelism inherent in a single <20
instruction stream.

Medium Parallel processing or multitasking 20-200
within a single application

Coarse Multiprocessing of concurrent processes 200-2000
in a multiprogramming environment

Very Coarse Distributed processing across network 2000-1M
nodes to form a single computing
environment

Independent Multiple unrelated processes not applicable

Scheduling
Design Issues

e Scheduling on a multiprocessor involves
three interrelated issues:
— Assignment of processes to processors

— Use of multiprogramming on individual
processors

— Actual dispatching of a process

 The approach taken will depend on the
degree of granularity of applications and
the number of processors available

Assignment of
Processes to Processors

e Assuming all processors are equal, it is
simplest to treat processors as a pooled
resource and assign process to
processors on demand.

— Should the assignment be static or dynamic
though?

 Dynamic Assignment

— threads are moved for a queue for one
processor to a queue for another processor;

Static Assignment

 Permanently assign process to a
Processor
— Dedicate short-term queue for each processor
— Less overhead

— Allows the use of ‘group’ or ‘gang’ scheduling
(see later)

 But may leave a processor idle, while
others have a backlog

— Solution: use a common gueue

Assignment of
Processes to Processors

 Both dynamic and static methods require
some way of assigning a process to a
processor

e Two methods:
— Master/Slave
— Peer

 There are of course a spectrum of
approaches between these two extremes.

Master / Slave

Architecture

Key kernel functions always run on a
particular processor

Master is responsible for scheduling
Slave sends service request to the master

Disadvantages
— Failure of master brings down whole system
— Master can become a performance bottleneck

Peer architecture

« Kernel can execute on any processor
« Each processor does self-scheduling

 Complicates the operating system

— Make sure two processors do not choose the
same process

Process Scheduling

o Usually processes are not dedicated to
Processors

« A single queue is used for all processes

 Or multiple queues are used for priorities

— All queues feed to the common pool of
pProcessors

Thread Scheduling

 Threads execute separate from the rest of
the process

« An application can be a set of threads that
cooperate and execute concurrently in the
same address space

 Dramatic gains in performance are
possible In multi-processor systems

— Compared to running in uniprocessor systems

Approaches to
Thread Scheduling

 Many proposals exist but four general
approaches stand out:

— Load Sharing

— Gang Scheduling

— Dedicated processor assignment
— Dynamic scheduling

Load Sharing

Processes are not assigned to a particular
processor

Load Is distributed evenly across the
Processors

No centralized scheduler required

The global gueue can be organized and
accessed using any of the schemes
discussed in Chapter 9.

Disadvantages of
Load Sharing

e Central queue needs mutual exclusion
— Can lead to bottlenecks

 Preemptive threads are unlikely resume
execution on the same processor

o If all threads are in the global queue, all
threads of a program will not gain access
to the processors at the same time

Gang Scheduling

o A set of related threads Is scheduled to
run on a set of processors at the same
time

« Parallel execution of closely related

processes may reduce overhead such as

orocess switching and synchronization
nlocking.

Dedicated Processor
Assignment

 \When application Is scheduled, its threads
are assigned to a processor
e Some processors may be idle

— No multiprogramming of processors
e But

— In highly parallel systems processor utilization
IS less iImportant than effectiveness

— Avoliding process switching speeds up
programs

Dynamic Scheduling

e Number of threads In a process are
altered dynamically by the application

— This allows the OS to adjust the load to
Improve utilization

Unidad IV Planificacion en
Sistemas de Tiempo Real

Real-Time Scheduling

« Correctness of the system depends not
only on the logical result of the
computation but also on the time at which
the results are produced

e Tasks or processes attempt to control or
react to events that take place in the
outside world

e These events occur In “real time” and
tasks must be able to keep up with them

Hard vs Soft

e “Hard “ real time task:
— One that must meet a deadline

e “Soft” real time task

— Has a deadline which 1s desirable but not
mandatory

Periodic vs Aperiodic

e Periodic tasks

— Are completed regularly, once per period T or
T units apart

« Aperiodic tasks

— have time constraints either for deadlines or
start

Real-Time Systems

Control of laboratory experiments
Process control in industrial plants
Robotics

Alir traffic control

Telecommunications

Military command and control systems

Characteristics of

Real Time Systems

* Real time systems have requirements In
five general areas:

— Determinism

— Responsiveness
— User control

— Reliability

— Fall-soft operation

Determinism

o Operations are performed at fixed,
predetermined times or within
predetermined time intervals

e Concerned with how long the operating
system delays before acknowledging an
Interrupt and there Is sufficient capacity to
handle all the requests within the required
time

Responsiveness

 How long, after acknowledgment, it takes
the operating system to service the
Interrupt

* Responsiveness includes:

— Amount of time to begin execution of the
Interrupt

— Amount of time to perform the interrupt
— Effect of interrupt nesting

User control

It Is essential to allow the user fine-grained
control over task priority.

May allow user to specify things such as
paging or process swapping

Disks transfer algorithms to use

Rights of processes

Characteristics

* Reliablility
— Degradation of performance may have
catastrophic consequences

 Fail-soft operation

— Abllity of a system to fail in such a way as to
preserve as much capability and data as
possible

— Stability is important — if all deadlines are
Impossible, critical deadlines still meet.

Features of
Real-Time OS

Fast process or thread switch

Small size

Ability to respond to external interrupts
quickly

Multitasking with interprocess

communication tools such as semaphores,
signals, and events

Features of
Real-Time OS cont...

Use of special sequential files that can
accumulate data at a fast rate

Preemptive scheduling base on priority

Minimization of intervals during which
Interrupts are disabled

Delay tasks for fixed amount of time
Special alarms and timeouts

Round Robin
scheduling unacceptable

Request from a

real-time process Real-time process added to

run queue to await its next slice

--------------------------I

+
y+

-— SCIIE iilllillg tillle—'

Real-time
Process n
process

Clock
tick

(a) Round-robin Preemptive Scheduler

Priority driven
unacceptable

Request from a

real-time process Real-time process added

to head of run queue

4 O O O W O W O . -

¢ i

¢ Y
Process

Current process
\Eurrent process

<= Scheduling time =—- blocked or completed

Real-time

(b} Priority-Driven Nonpreemptive Scheduler

Combine priorities with
clock-based interrupts

Request from a
real-time process Wait for next

preemption point

1 Real-time
Current process
process

Preemption . .
P Scheduling time

l] l:ll"il].t M

(e} Priority-Driven Preemptive Scheduler on Preemption Points

Immediate Preemption

Request from a
real-time process
Real-time process preempts current

,* Process and executes immediately

1 Real-time
Current process
process

sl

Scheduling time

(d) Immediate Preemptive Scheduler

Classes of Real-Time
Scheduling Algorithms

Static table-driven

— Task execution determined at run time
Static priority-driven preemptive

— Traditional priority-driven scheduler Is used
Dynamic planning-based

— Feasibility determined at run time

Dynamic best effort
— No feasibility analysis Is performed

Deadline Scheduling

* Real-time applications are not concerned
with speed but with completing tasks

e “Priorities” are a crude tool and may not

capture the time-critical element of the
tasks

Deadline Scheduling

e Information used
— Ready time
— Starting deadline
— Completion deadline
— Processing time
— Resource requirements
— Priority
— Subtask scheduler

Preemption

* When starting deadlines are specified,

then a nonpreemptive scheduler makes
sense.

 E.G. If task X Is running and task Y Is
ready, there may be circumstances In
which the only way to allow both X and Y
to meet their completion deadlines Is to
preempt X, execute Y to completion, and
then resume X to completion.

Rate Monotonic L
Scheduling

« Assigns priorities to tasks on the basis of
their periods

e Highest-priority task is the one with the
shortest period

Task Set

High Highest rate and
A highest priority task)
A _@_z
-
-
P
P
= -
5 {Bﬁ
DE /
e j; -~
~
-~
- 1‘: — Lowest rate and
d lowest priority task
Y
Low

Rate (Hz)

Figure 10.8 A Task Set with RMS [WARR91]

Periodic Task Timing Diagram

- Cycle 1 > Cycle 2 L

Processing Idle Processing I I
- Time
task P execution time C »
- task P period T -

Figure 10.9 Periodic Task Timing Diagram

Priority Inversion

e Can occur In any priority-based
preemptive scheduling scheme

e Occurs when circumstances within the
system force a higher priority task to wait
for a lower priority task

Unbounded
Priority Inversion

 Duration of a priority inversion depends on
unpredictable actions of other unrelated
tasks S

(attempt to lock s) s locked

T,
T, I
ireempted
locked 1 by 11"1 P bll;]_]ted s unlocked
/ yi,
T, |
t t t3 ty ts ts t7 tg
—_—
time

Priority Inheritance

« Lower-priority task inherits the priority of
any higher priority task pending on a
resource they share

s locked
blocked by T3 by T,

(attempt to lock s)) s unlocked

N/

T

. | |
slocked DPreempted
SIJ[::TL: by T, focked

T3 | |

