
UTN FRD – Sistemas 
Operativos

Unidad IV Planificación de 
Procesos



Unidad IV Planificación 
Uniprocesador



Scheduling

• An OS must allocate resources amongst 
competing processes.

• The resource provided by a processor is 
execution time
– The resource is allocated by means of a 

schedule



Overall Aim 
of Scheduling

• The aim of processor scheduling is to 
assign processes to be executed by the 
processor over time, 
– in a way that meets system objectives, such 

as response time, throughput, and processor 
efficiency. 



Scheduling Objectives

• The scheduling function should
– Share time fairly among processes

– Prevent starvation of a process
– Use the processor efficiently

– Have low overhead
– Prioritise processes when necessary (e.g. real 

time deadlines)



Types of Scheduling



Long-Term Scheduling

• Determines which programs are admitted 
to the system for processing
– May be first-come-first-served

– Or according to criteria such as priority, I/O 
requirements or expected execution time

• Controls the degree of multiprogramming
• More processes, smaller percentage of 

time each process is executed



Medium-Term 
Scheduling

• Part of the swapping function
• Swapping-in decisions are based on the 

need to manage the degree of 
multiprogramming



Short-Term Scheduling

• Known as the dispatcher
• Executes most frequently
• Invoked when an event occurs

– Clock interrupts

– I/O interrupts
– Operating system calls

– Signals



Aim of Short 
Term Scheduling

• Main objective is to allocate processor 
time to optimize certain aspects of system 
behaviour.

• A set of criteria is needed to evaluate the 
scheduling policy.



Short-Term Scheduling 
Criteria: User vs System

• We can differentiate between user and 
system criteria

• User-oriented
– Response Time

• Elapsed time between the submission of a request 
until there is output.

• System-oriented
– Effective and efficient utilization of the 

processor



Short-Term Scheduling 
Criteria: Performance

• We could differentiate between 
performance related criteria, and those 
unrelated to performance

• Performance-related
– Quantitative, easily measured

– E.g. response time and throughput

• Non-performance related
– Qualitative
– Hard to measure



Interdependent 
Scheduling Criteria



Interdependent 
Scheduling Criteria cont.



Priorities

• Scheduler will always choose a process of 
higher priority over one of lower priority

• Have multiple ready queues to represent 
each level of priority



Priority Queuing



Starvation

• Problem:
– Lower-priority may suffer starvation if there is 

a steady supply of high priority processes.

• Solution
– Allow a process to change its priority based 

on its age or execution history



Alternative Scheduling 
Policies



Selection Function

• Determines which process is selected for 
execution

• If based on execution characteristics then 
important quantities are:
• w = time spent in system so far, waiting

• e = time spent in execution so far
• s = total service time required by the process, 

including e;



Decision Mode

• Specifies the instants in time at which the 
selection function is exercised.

• Two categories:
– Nonpreemptive
– Preemptive



Nonpreemptive vs 
Premeptive

• Non-preemptive
– Once a process is in the running state, it will 

continue until it terminates or blocks itself for 
I/O

• Preemptive 
– Currently running process may be interrupted 

and moved to ready state by the OS
– Preemption may occur when new process 

arrives, on an interrupt, or periodically.



Process Scheduling 
Example

• Example set of 
processes, 
consider each a 
batch job

– Service time represents total execution time



First-Come-
First-Served

• Each process joins the Ready queue
• When the current process ceases to 

execute, the longest process in the Ready 
queue is selected



First-Come-
First-Served

• A short process may have to wait a very 
long time before it can execute

• Favors CPU-bound processes
– I/O processes have to wait until CPU-bound 

process completes



Round Robin

• Uses preemption based on a clock
– also known as time slicing, because each 

process is given a slice of time before being 
preempted.



Round Robin

• Clock interrupt is generated at periodic 
intervals

• When an interrupt occurs, the currently 
running process is placed in the ready 
queue
– Next ready job is selected



Effect of Size of 
Preemption Time Quantum



Effect of Size of 
Preemption Time Quantum



‘Virtual Round Robin’



Shortest Process Next

• Nonpreemptive policy
• Process with shortest expected processing 

time is selected next
• Short process jumps ahead of longer 

processes



Shortest Process Next

• Predictability of longer processes is 
reduced

• If estimated time for process not correct, 
the operating system may abort it

• Possibility of starvation for longer 
processes



Shortest Remaining
Time

• Preemptive version of shortest process 
next policy

• Must estimate processing time and choose 
the shortest



Highest Response 
Ratio Next

• Choose next process with the greatest 
ratio



Feedback Scheduling

• Penalize jobs that 
have been running 
longer

• Don’t know 
remaining time 
process needs to 
execute



Feedback Performance

• Variations exist, simple version pre-empts 
periodically, similar to round robin
– But can lead to starvation



Performance 
Comparison

• Any scheduling discipline that chooses the 
next item to be served independent of 
service time obeys the relationship:



Unidad IV Planificación 
Multiprocesador



Classifications of 
Multiprocessor Systems

• Loosely coupled processors, 
– Each has their memory & I/O channels

• Functionally specialized processors
– Controlled by a master processor

– Such as I/O processor

• Tightly coupled multiprocessing
– Processors share main memory 
– Controlled by operating system



Granularity

• Or frequency of synchronization, between 
processes in a system.

• Five categories, differing in granularity:
– Independent Parallelism
– Coarse Parallelism 

– Very Coarse-Grained Parallelism
– Medium-Grained Parallelism
– Fine-Grained Parallelism



Independent Parallelism

• No explicit synchronization among 
processes

• Separate application or job
• Example is time-sharing system



Coarse and Very 
Coarse-Grained Parallelism

• Synchronization among processes at a 
very gross level

• Good for concurrent processes running on 
a multiprogrammed uniprocessor
– Can by supported on a multiprocessor with 

little change



Medium-Grained 
Parallelism

• Single application is a collection of threads
• Threads usually interact frequently, 

affecting the performance of the entire 
application



Fine-Grained 
Parallelism

• Highly parallel applications
• Specialized and fragmented area



Synchronization 
Granularity and Processes



Scheduling 
Design Issues

• Scheduling on a multiprocessor involves 
three interrelated issues:
– Assignment of processes to processors

– Use of multiprogramming on individual 
processors

– Actual dispatching of a process

• The approach taken will depend on the 
degree of granularity of applications and 
the number of processors available



Assignment of 
Processes to Processors

• Assuming all processors are equal, it is 
simplest to treat processors as a pooled 
resource and assign process to 
processors on demand.
– Should the assignment be static or dynamic 

though?

• Dynamic Assignment
– threads are moved for a queue for one 

processor to a queue for another processor; 



Static Assignment

• Permanently assign process to a 
processor
– Dedicate short-term queue for each processor

– Less overhead
– Allows the use of ‘group’ or ‘gang’ scheduling 

(see later)

• But may leave a processor idle, while 
others have a backlog
– Solution: use a common queue



Assignment of
Processes to Processors

• Both dynamic and static methods require 
some way of assigning a process to a 
processor

• Two methods:
– Master/Slave

– Peer

• There are of course a spectrum of 
approaches between these two extremes.



Master / Slave
Architecture

• Key kernel functions always run on a 
particular processor

• Master is responsible for scheduling
• Slave sends service request to the master
• Disadvantages

– Failure of master brings down whole system

– Master can become a performance bottleneck



Peer architecture

• Kernel can execute on any processor
• Each processor does self-scheduling
• Complicates the operating system

– Make sure two processors do not choose the 
same process



Process Scheduling

• Usually processes are not dedicated to 
processors

• A single queue is used for all processes
• Or multiple queues are used for priorities

– All queues feed to the common pool of 
processors



Thread Scheduling

• Threads execute separate from the rest of 
the process

• An application can be a set of threads that 
cooperate and execute concurrently in the 
same address space

• Dramatic gains in performance are 
possible in multi-processor systems
– Compared to running in uniprocessor systems



Approaches to
Thread Scheduling

• Many proposals exist but four general 
approaches stand out:
– Load Sharing

– Gang Scheduling
– Dedicated processor assignment

– Dynamic scheduling



Load Sharing

• Processes are not assigned to a particular 
processor

• Load is distributed evenly across the 
processors

• No centralized scheduler required
• The global queue can be organized and 

accessed using any of the schemes 
discussed in Chapter 9.



Disadvantages of 
Load Sharing

• Central queue needs mutual exclusion
– Can lead to bottlenecks

• Preemptive threads are unlikely resume 
execution on the same processor

• If all threads are in the global queue, all 
threads of a program will not gain access 
to the processors at the same time



Gang Scheduling

• A set of related threads is scheduled to 
run on a set of processors at the same 
time

• Parallel execution of closely related 
processes may reduce overhead such as 
process switching and synchronization 
blocking.



Dedicated Processor 
Assignment

• When application is scheduled, its threads 
are assigned to a processor

• Some processors may be idle
– No multiprogramming of processors

• But
– In highly parallel systems processor utilization 

is less important than effectiveness
– Avoiding process switching speeds up 

programs



Dynamic Scheduling

• Number of threads in a process are 
altered dynamically by the application
– This allows the OS to adjust the load to 

improve utilization



Unidad IV Planificación en 
Sistemas de Tiempo Real



Real-Time Scheduling

• Correctness of the system depends not 
only on the logical result of the 
computation but also on the time at which 
the results are produced

• Tasks or processes attempt to control or 
react to events that take place in the 
outside world

• These events occur in “real time” and 
tasks must be able to keep up with them



Hard vs Soft

• “Hard “ real time task:
– One that must meet a deadline

• “Soft” real time task
– Has a deadline which is desirable but not 

mandatory



Periodic vs Aperiodic

• Periodic tasks
– Are completed regularly, once per period T or 

T units apart

• Aperiodic tasks
– have time constraints either for deadlines or 

start



Real-Time Systems

• Control of laboratory experiments
• Process control in industrial plants
• Robotics
• Air traffic control
• Telecommunications
• Military command and control systems



Characteristics of 
Real Time Systems

• Real time systems have requirements in 
five general areas:
– Determinism

– Responsiveness
– User control

– Reliability
– Fail-soft operation



Determinism

• Operations are performed at fixed, 
predetermined times or within 
predetermined time intervals

• Concerned with how long the operating 
system delays before acknowledging an 
interrupt and there is sufficient capacity to 
handle all the requests within the required 
time



Responsiveness

• How long, after acknowledgment, it takes 
the operating system to service the 
interrupt

• Responsiveness includes:
– Amount of time to begin execution of the 

interrupt
– Amount of time to perform the interrupt

– Effect of interrupt nesting



User control

• It is essential to allow the user fine-grained 
control over task priority.

• May allow user to specify things such as 
paging or process swapping

• Disks transfer algorithms to use
• Rights of processes



Characteristics

• Reliability
– Degradation of performance may have 

catastrophic consequences

• Fail-soft operation
– Ability of a system to fail in such a way as to 

preserve as much capability and data as 
possible

– Stability is important – if all deadlines are 
impossible, critical deadlines still meet.



Features of 
Real-Time OS

• Fast process or thread switch
• Small size
• Ability to respond to external interrupts 

quickly
• Multitasking with interprocess 

communication tools such as semaphores, 
signals, and events



Features of 
Real-Time OS cont…

• Use of special sequential files that can 
accumulate data at a fast rate

• Preemptive scheduling base on priority
• Minimization of intervals during which 

interrupts are disabled
• Delay tasks for fixed amount of time
• Special alarms and timeouts



Round Robin 
scheduling unacceptable



Priority driven 
unacceptable



Combine priorities with
clock-based interrupts



Immediate Preemption



Classes of Real-Time 
Scheduling Algorithms

• Static table-driven
– Task execution determined at run time

• Static priority-driven preemptive
– Traditional priority-driven scheduler is used

• Dynamic planning-based
– Feasibility determined at run time

• Dynamic best effort
– No feasibility analysis is performed



Deadline Scheduling

• Real-time applications are not concerned 
with speed but with completing tasks

• “Priorities” are a crude tool and may not 
capture the time-critical element of the 
tasks



Deadline Scheduling

• Information used
– Ready time

– Starting deadline
– Completion deadline

– Processing time
– Resource requirements

– Priority
– Subtask scheduler



Preemption

• When starting deadlines are specified, 
then a nonpreemptive scheduler makes 
sense. 

• E.G. if task X is running and task Y is 
ready, there may be circumstances in 
which the only way to allow both X and Y 
to meet their completion deadlines is to 
preempt X, execute Y to completion, and 
then resume X to completion.



Rate Monotonic 
Scheduling

• Assigns priorities to tasks on the basis of 
their periods

• Highest-priority task is the one with the 
shortest period



Task Set



Periodic Task Timing Diagram



Priority Inversion

• Can occur in any priority-based 
preemptive scheduling scheme

• Occurs when circumstances within the 
system force a higher priority task to wait 
for a lower priority task



Unbounded 
Priority Inversion

• Duration of a priority inversion depends on 
unpredictable actions of other unrelated 
tasks



Priority Inheritance

• Lower-priority task inherits the priority of 
any higher priority task pending on a 
resource they share


