
UTN FRD – Sistemas Operativos

Revisión  Clase 3

Clase 4 – Unidad II - Procesos



Requirements of an

Operating System

• Fundamental Task: Process Management

• The Operating System must

– Interleave the execution of multiple processes

– Allocate resources to processes, and protect the 

resources of each process from other processes, 

– Enable processes to share and exchange 

information, 

– Enable synchronization among processes.



Concepts

– Computer platforms consists of a collection of 
hardware resources

– Computer applications are developed to perform 
some task

– It is inefficient for applications to be written 
directly for a given hardware platform

– OS provides an interface for applications to use

– OS provides a representation of resources that can be 
requested and accessed by application



The OS Manages

Execution of Applications

• Resources are made available to multiple 

applications

• The processor is switched among multiple 

application

• The processor and I/O devices can be used 

efficiently



What is a “process”?

• A program in execution

• An instance of a program running on a 
computer

• The entity that can be assigned to and 
executed on a processor

• A unit of activity characterized by the 
execution of a sequence of instructions, a 
current state, and an associated set of system 
instructions



Process Elements

• A process is comprised of:

– Program code (possibly shared)

– A set of data

– A number of attributes describing the state of the 
process



Process Elements

• While the process is running it has:

– Identifier

– State

– Priority

– Program counter

– Memory pointers

– Context data

– I/O status information

– Accounting information



Process Control Block

• Contains the process 

elements

• Created and manage by 

the operating system

• Allows support for 

multiple processes



Trace of the Process

• The behavior of an individual process is shown 

by listing the sequence of instructions that are 

executed

• This list is called a Trace

• Dispatcher is a small program which switches 

the processor from one process to another



Process Execution

• Consider three 

processes being 

executed

• All are in memory 

(plus the dispatcher)

• Lets ignore virtual 

memory for this.



Trace from the 

processes point of view:

• Each process runs to completion



Trace from Processors 

point of view

Timeout
I/O

TimeoutTimeout



Estado de los Procesos



Two-State Process Model

• Process may be in one of two states

– Running

– Not-running



Queuing Diagram

Etc … processes moved by the dispatcher of the OS to the CPU then back to the 

queue until the task is competed



Process Birth and Death

Creation Termination 

New batch job Normal Completion

Interactive Login Memory unavailable

Created by OS to 

provide a service

Protection error

Spawned by existing 

process

Operator or OS 

Intervention

See tables 3.1 and 3.2 for more



Process Creation

• The OS builds a data structure to manage the 

process

• Traditionally, the OS created all processes

– But it can be useful to let a running process create 

another

• This action is called process spawning

– Parent Process is the original, creating, process

– Child Process is the new process



Process Termination

• There must be some way that a process can 

indicate completion.

• This indication may be:

– A HALT instruction generating an interrupt alert to 

the OS.

– A user action (e.g. log off, quitting an application)

– A fault or error

– Parent process terminating



UTN FRD – Sistemas Operativos

TP I Planificador de Procesos -

Modelo de dos Estados



Five-State 

Process Model



Using Two Queues



Multiple Blocked Queues



Suspended Processes

• Processor is faster than I/O so all processes 
could be waiting for I/O

– Swap these processes to disk to free up more 
memory and use processor on more processes

• Blocked state becomes suspend state when 
swapped to disk

• Two new states

– Blocked/Suspend

– Ready/Suspend



One Suspend State



Two Suspend States



Reason for Process Suspension

Reason Comment

Swapping The OS needs to release sufficient main memory to 

bring in a process that is ready to execute.

Other OS Reason OS suspects process of causing a problem.

Interactive User Request e.g. debugging or in connection with the use of a 

resource.

Timing A process may be executed periodically (e.g., an 

accounting or system monitoring process) and may be 

suspended while waiting for the next time.

Parent Process Request A parent process may wish to suspend execution of a 

descendent to examine or modify the suspended 

process, or to coordinate the activity of various 

descendants.

Table 3.3 Reasons for Process Suspension



UTN FRD – Sistemas Operativos

TP I Planificador de Procesos -

Modelo de dos Estados



UTN FRD – Sistemas Operativos

Revisión  Clase 4

Clase 5 – Unidad II - Procesos



Estructuras de Datos que el SO 

requiere para gestionar Procesos



Processes 

and Resources



Operating System 

Control Structures

• For the OS is to manage processes and 

resources, it must have information about the 

current status of each process and resource. 

• Tables are constructed for each entity the 

operating system manages



OS Control Tables



Memory Tables

• Memory tables are used to keep track of both 

main and secondary memory. 

• Must include this information:

– Allocation of main memory to processes

– Allocation of secondary memory to processes

– Protection attributes for access to shared memory 

regions

– Information needed to manage virtual memory



I/O Tables

• Used by the OS to manage the I/O devices and 

channels of the computer.

• The OS needs to know

– Whether the I/O device is available or assigned

– The status of I/O operation

– The location in main memory being used as the 

source or destination of the I/O transfer



File Tables

• These tables provide information about:

– Existence of files

– Location on secondary memory

– Current Status

– other attributes.

• Sometimes this information is maintained by a 

file management system



Process Tables

• To manage processes the OS needs to know 

details of the processes 

– Current state

– Process ID

– Location in memory

– etc

• Process control block

– Process image is the collection of program. Data, 

stack, and attributes



Process Attributes

• We can group the process control block 

information into three general categories:

– Process identification

– Processor state information

– Process control information



Process Identification

• Each process is assigned a unique numeric 

identifier.

• Many of the other tables controlled by the OS 

may use process identifiers to cross-reference 

process tables



Processor State 

Information

• This consists of the contents of processor 
registers. 

– User-visible registers

– Control and status registers

– Stack pointers

• Program status word (PSW)

– contains status information

– Example: the EFLAGS register on Pentium 
processors



Pentium II 

EFLAGS Register

Also see Table 3.6



Process Control

Information

• This is the additional information needed by 

the OS to control and coordinate the various 

active processes.

– See table 3.5 for scope of information



Structure of Process 

Images in Virtual Memory



Role of the 

Process Control Block

• The most important data structure in an OS

– It defines the state of the OS

• Process Control Block requires protection

– A faulty routine could cause damage to the block 

destroying the OS’s ability to manage the process

– Any design change to the block could affect many 

modules of the OS



Modes of Execution

• Most processors support at least two modes 

of execution

• User mode

– Less-privileged mode

– User programs typically execute in this mode

• System mode

– More-privileged mode

– Kernel of the operating system



Process Creation

• Once the OS decides to create a new process 

it:

– Assigns a unique process identifier

– Allocates space for the process

– Initializes process control block

– Sets up appropriate linkages

– Creates or expand other data structures



Switching Processes

• Several design issues are raised regarding 

process switching

– What events trigger a process switch? 

– We must distinguish between mode switching and 

process switching.

– What must the OS do to the various data 

structures under its control to achieve a process 

switch?



When to switch processes

Mechanism Cause Use

Interrupt External to the execution of the 

current instruction

Reaction to an asynchronous

external event

Trap Associated with the execution of 

the current instruction

Handling of an error or an

exception condition

Supervisor call Explicit request Call to an operating system

function

Table 3.8 Mechanisms for Interrupting the Execution of a Process

A process switch may occur any time that the OS has gained control from the 

currently running process. Possible events giving OS control are: 



Change of 

Process State …

• The steps in a process switch are:

1. Save context of processor including program 
counter and other registers

2. Update the process control block of the process 
that is currently in the Running state

3. Move process control block to appropriate 
queue – ready; blocked; ready/suspend



Change of 

Process State cont…

4. Select another process for execution

5. Update the process control block of the 

process selected

6. Update memory-management data 

structures

7. Restore context of the selected process



Is the OS a Process?

• If the OS is just a collection of programs and if 

it is executed by the processor just like any 

other program, is the OS a process?

• If so, how is it controlled?

– Who (what) controls it?



Execution of the

Operating System



Non-process Kernel

• Execute kernel outside of any process

• The concept of process is considered to apply 
only to user programs

– Operating system code is executed as a separate 
entity that operates in privileged mode



Execution Within

User Processes

• Execution Within User Processes

– Operating system software within 
context of a user process

– No need for Process Switch to run 
OS routine



Process-based 

Operating System

• Process-based operating system

– Implement the OS as a collection of system 

process



Security Issues

• An OS associates a set of privileges with each 

process.

– Highest level being administrator, supervisor, or 

root, access.

• A key security issue in the design of any OS is 

to prevent anything (user or process) from 

gaining unauthorized privileges on the system 

– Especially - from gaining root access.



System access threats

• Intruders

– Masquerader (outsider)

– Misfeasor (insider)

– Clandestine user (outside or insider)

• Malicious software (malware)



UNIX SVR4

UNIX System V Release IV

Administración de Procesos



Unix SVR4
System V Release 4

• Uses the model of fig3.15b where most of the OS 

executes in the user process

• System Processes - Kernel mode only

• User Processes

– User mode to execute user programs and utilities

– Kernel mode to execute instructions that belong to 

the kernel.



UNIX Process State Transition 

Diagram



UNIX Process States



A Unix Process

• A process in UNIX is a set of data structures 

that provide the OS with all of the information 

necessary to manage and dispatch processes. 

• See Table 3.10 which organizes the elements 

into three parts:

– user-level context, 

– register context, and 

– system-level context.



Process Creation

• Process creation is by means of the kernel 

system call,fork( ).

• This causes the OS, in Kernel Mode, to:

1. Allocate a slot in the process table for the new 

process.

2. Assign a unique process ID to the child process.

3. Copy of process image of the parent, with the 

exception of any shared memory.



Process Creation 

cont…

4. Increment the  counters for any files owned by 

the parent, to reflect that an additional process 

now also owns those files.

5. Assign the child process to the Ready to Run 

state.

6. Returns the ID number of the child to the parent 

process, and a 0 value to the child process.



After Creation

• After creating the process the Kernel can do 

one of the following, as part of the dispatcher 

routine:

– Stay in the parent process. 

– Transfer control to the child process

– Transfer control to another process.



UTN FRD – Sistemas Operativos

TP II Procesos Pesados



UTN FRD – Sistemas Operativos

Revisión  Clase 5

Trabajo en TP II Procesos Pesados

Clase 6 – Unidad II - Procesos



UTN FRD – Sistemas Operativos

Unidad II – Hilos (Threads), SMP 

(Multriprocesamiento Simétrico), 

Micronúcleo (Microkernel)



Processes and Threads

• Processes have two characteristics:

– Resource ownership - process includes a virtual 

address space to hold the process image

– Scheduling/execution - follows an execution path 

that may be interleaved with other processes

• These two characteristics are treated 

independently by the operating system



Processes and Threads

• The unit of dispatching is referred to as a 

thread or lightweight process

• The unit of resource ownership is referred to 

as a process or task



Multithreading

• The ability of an OS 

to support multiple, 

concurrent paths of 

execution within a 

single process.



Single Thread 

Approaches

• MS-DOS supports a 

single user process and 

a single thread. 

• Some UNIX, support 

multiple user 

processes but only 

support one thread per 

process



Multithreading

• Java run-time 

environment is a single 

process with multiple 

threads

• Multiple processes and 

threads are found in 

Windows, Solaris, and 

many modern versions 

of UNIX



Processes

• A virtual address space which holds the 

process image

• Protected access to

– Processors, 

– Other processes, 

– Files, 

– I/O resources



One or More Threads in Process

• Each thread has

– An execution state (running, ready, etc.)

– Saved thread context when not running

– An execution stack

– Some per-thread static storage for local variables

– Access to the memory and resources of its 

process (all threads of a process share this)



One view…

• One way to view a thread is as an independent 

program counter operating within a process.



Threads vs. processes 



Benefits of Threads

• Takes less time to create a new thread than a 

process

• Less time to terminate a thread than a process

• Switching between two threads takes less 

time that switching processes

• Threads can communicate with each other 

– without invoking the kernel



Thread use in a 

Single-User System

• Foreground and background work

• Asynchronous processing

• Speed of execution

• Modular program structure



Threads

• Several actions that affect all of the threads in 

a process 

– The OS must manage these at the process level. 

• Examples:

– Suspending a process involves suspending all 

threads of the process 

– Termination of a process, terminates all threads 

within the process



Activities similar 

to Processes

• Threads have execution states and may 

synchronize with one another.

– Similar to processes

• We look at these two aspects of thread 

functionality in turn.

– States 

– Synchronisation



Thread Execution States

• States associated with a change in thread 

state

– Spawn (another thread)

– Block

• Issue: will blocking a thread block other, or  all, threads

– Unblock

– Finish (thread)

• Deallocate register context and stacks



Example: 

Remote Procedure Call

• Consider:

– A program that performs two remote procedure 

calls (RPCs) 

– to two different hosts 

– to obtain a combined result.



RPC

Using Single Thread



RPC Using 

One Thread per Server



Multithreading 

on a Uniprocessor



UTN FRD – Sistemas Operativos

Ejemplo Aplicativo de utilización de 

Hilos

-Adobe PageMaker

-Servidor Alumnos Programación I



Adobe PageMaker



Categories of 

Thread Implementation

• User Level Thread (ULT)

• Kernel level Thread (KLT) also called:

– kernel-supported threads 

– lightweight processes.



User-Level Threads

• All thread 

management is done 

by the application

• The kernel is not 

aware of the existence 

of threads



Relationships between  ULT

Thread and Process States



Kernel-Level Threads

• Kernel maintains context 

information for the 

process and the threads 

– No thread management 

done by application

• Scheduling is done on a 

thread basis

• Windows is an example of 

this approach



Advantages of KLT

• The kernel can simultaneously schedule 

multiple threads from the same process on 

multiple processors. 

• If one thread in a process is blocked, the 

kernel can schedule another thread of the 

same process.

• Kernel routines themselves can be 

multithreaded.



Disadvantage of KLT

• The transfer of control from one thread to 

another within the same process requires a 

mode switch to the kernel



Combined Approaches

• Thread creation done in 

the user space

• Bulk of scheduling and 

synchronization of threads 

by the application

• Example is Solaris



Relationship Between 

Thread and Processes



UTN FRD – Sistemas Operativos

TP III Procesos Livianos



UTN FRD – Sistemas Operativos

Revisión  Clase 6

Trabajo en TP III Procesos Livianos

Clase 7 – Unidad II - Procesos



UTN FRD – Sistemas Operativos

SMP (Multriprocesamiento 

Simétrico)



Traditional View

• Traditionally, the computer has been viewed 
as a sequential machine.

– A processor executes instructions one at a time in 
sequence

– Each instruction is a sequence of operations

• Two popular approaches to providing 
parallelism

– Symmetric MultiProcessors (SMPs)

– Clusters (ch 16)



Categories of 

Computer Systems

• Single Instruction Single Data (SISD) stream

– Single processor executes a single instruction 

stream to operate on data stored in a single 

memory

• Single Instruction Multiple Data (SIMD) 

stream

– Each instruction is executed on a different set of 

data by the different processors



Categories of Computer Systems

• Multiple Instruction Single Data (MISD) stream 

(Never implemented)

– A sequence of data is transmitted to a set of 

processors, each of execute a different instruction 

sequence 

• Multiple Instruction Multiple Data (MIMD)

– A set of processors simultaneously execute different 

instruction sequences on different data sets



Parallel Processor 

Architectures



Symmetric 

Multiprocessing

• Kernel can execute on any processor

– Allowing portions of the kernel to execute in 

parallel

• Typically each processor does self-scheduling 

from the pool of available process or threads



Typical

SMP Organization



Multiprocessor OS

Design Considerations

• The key design issues include

– Simultaneous concurrent processes or threads

– Scheduling

– Synchronization

– Memory Management

– Reliability and Fault Tolerance



UTN FRD – Sistemas Operativos

Micronúcleo (Microkernel)



Microkernel

• A microkernel is a small OS core that provides 

the foundation for modular extensions.

• Big question is how small must a kernel be to 

qualify as a microkernel

– Must drivers be in user space?

• In theory, this approach provides a high 

degree of flexibility and modularity. 



Kernel Architecture



Microkernel Design: 

Memory Management

• Low-level memory management - Mapping 

each virtual page to a physical page frame

– Most memory management tasks occur in user 

space



Microkernel Design:

Interprocess Communication

• Communication between processes or threads 

in a microkernel OS is via messages.

• A message includes:

– A header that identifies the sending and receiving 

process and 

– A body that contains direct data, a pointer to a 

block of data, or some control information about 

the process.



Microkernal Design:

I/O and interrupt management

• Within a microkernel it is possible to handle 

hardware interrupts as messages and to 

include I/O ports in address spaces.

– a particular user-level process is assigned to the 

interrupt and the kernel maintains the mapping.



Benefits of a

Microkernel Organization

• Uniform interfaces on requests made by a 
process.

• Extensibility

• Flexibility

• Portability

• Reliability

• Distributed System Support

• Object Oriented Operating Systems



Micronúcleo (Microkernel)

Consideraciones de Diseño:

Gestión Memoria Bajo Nivel, IPC, 

Gestión I/O e Interrupciones



¿En qué difieren las distintas 

implementaciones de Hilos y Procesos 

en los SO’s?
– How processes are named

– Whether threads are provided

– How processes are represented

– How process resources are protected

– What mechanisms are used for inter-process 

communication and synchronization

– How processes are related to each other



El caso de Windows. 

Implementación de Procesos, 

Hilos, Soporte para SMP



Windows Processes

• Processes and services provided by the 

Windows Kernel are relatively simple and 

general purpose

– Implemented as objects

– An executable process may contain one or more 

threads

– Both processes and thread objects have built-in 

synchronization capabilities



Windows Process Object



Windows Thread Object



Thread States



Windows SMP Support

• Threads can run on any processor

– But an application can restrict affinity

• Soft Affinity

– The dispatcher tries to assign a ready thread to the same 

processor it last ran on.

– This helps reuse data still in that processor’s memory 

caches from the previous execution of the thread.

• Hard Affinity

– An application restricts threads to certain processor



El caso de Linux. 

Implementación de Procesos, 

Hilos, Soporte para SMP



Linux Tasks

• A process, or task, in Linux is represented by a 
task_struct data structure

• This contains a number of categories 
including:

– State

– Scheduling information

– Identifiers

– Interprocess communication

– And others



Linux 

Process/Thread Model



UTN FRD – Sistemas Operativos

Revisión  Clase 7

Trabajo en TP I Planificador de 

Procesos

Trabajo en TP II Procesos Pesados

Trabajo en TP III Procesos Livianos

Clase 8 – Unidad II - Procesos


