UTN FRD — Sistemas Operativos
Clase |

Basic Elements

e Processor

— Two internal registers
e Memory address resister (MAR)

— Specifies the address for the next read or write

e Memory buffer register (MBR)

— Contains data written into memory or receives data read from
memory

Basic Elements

e Processor

— 1/O address register
— |/0O buffer register

Basic Elements

e Main Memory
— Volatile
— Referred to as real memory or primary memory

Basic Elements

* |/O Modules
— Secondary Memory Devices
— Communications equipment
— Terminals

e System bus

— Communication among processors, main memory,
and I/O modules

Computer Components: Top-Level
View

CPU Main Memory

System .
PC MAR Bus

Instruction

* 8 8 =D

Instruction

Instruction

IR MBR

L]
L]

I/O AR °

/O BR Data

Data

Data

1I/0 Module * B}

=

=
[
-

: PC

Buffers IR
MAR

Program counter

Instruction register

Memory address register
MBR Memory buffer register

I/O AR = Input/output address register
I/O BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

Computer Hardware Review

Cache bus Local bus Memory bus

Level 2 PCI l Main
cache <£> cPU &:\/ bridge < >memory

TTr v I

Graphics
SCSI USB ISA <:> IDE adaptor Available
y bridge disk ¥ PCl slot
& ~ \ g Mon-
B itor
Mouse| | "eY-
board ISA bus
% yd (110 >
I I s
Sound , ;
Modem Printer Available
card ISA slot

Structure of a large Pentium system

Processor Registers

e User-visible registers

— Enable programmer to minimize main memory
references by optimizing register use

e Control and status registers

— Used by processor to control operating of the
processor

— Used by privileged OS routines to control the
execution of programs

User-Visible Registers

* May be referenced by machine language

e Available to all programs — application
programs and system programs

User-Visible Registers

e Data
e Address

— Index register: Adding an index to a base value to
get the effective address

— Segment pointer: When memory is divided into
segments, memory is referenced by a segment
and an offset

— Stack pointer: Points to top of stack

Control and Status Registers

 Program counter (PC)

— Contains the address of an instruction to be
fetched

e |nstruction register (IR)

— Contains the instruction most recently fetched

 Program status word (PSW)

— Contains status information

Control and Status Registers

 Condition codes or flags

— Bits set by processor hardware as a result of
operations

— Example

e Positive, negative, zero, or overflow result

Instruction Execution

* Two steps

— Processor reads (fetches) instructions from
memory

— Processor executes each instruction

START

Basic Instruction Cycle

Fetch Stage Execute Stage
Fetch Next Execute
Instruction Instruction HALT

Figure 1.2 Basic Instruction Cycle

Instruction Fetch and Execute

 The processor fetches the instruction from
memory

 Program counter (PC) holds address of the
instruction to be fetched next

e PCisincremented after each fetch

Instruction Register

e Fetched instruction loaded into instruction
register
e Categories

— Processor-memory, processor-1/0, data
processing, control

Example of Program Execution

Fetch Stage Execute Stage
Memory CPU Registers Memory CPU Registers
30011 9 4 0 3 0 0|PC 30011 9 40 30 1|PC
30159411 AC|301|5 9 4 1 000 3|AC
30212 9 4 1 1 9 4 0|IR|302(2 9 41 1 9 4 0]IR
940[0 0 0 3 940[0 0 0 3
941100 0 2 9410 0 0 2
Step 1 Step 2
Memory CPU Registers Memory CPU Registers
30011 9 40 30 1|PC 30011 9 40 30 2|PC
30115 9 4 1 000 3|AC}301|5 9 41 000 5[AC
3032941“5941[1? 3022941<5941
940[0 0 0 3 o000 03 *3+2-5
94110 0 0 2 941{0 0 0 2
Step 3 Step 4
Memory CPU Registers Memory CPU Registers
30011 9 4 0 3 0 2|PC 30011 9 40 3 0 3|PC
30115 9 4 1 0 00S5|AC}301|15 9 41 000 5|AC
30212 9 4 1 » 2 9 4 1|IR |302]2 9 4 1 29 4 1|IR
940[0 0 0 3 940[00 0 3
94110 0 0 2 9410 0 0 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Metric Units

Exp. Explicit Prefix | Exp. Explicit Prefix
1072 0.001 milli 10° 1,000 | Kilo
10°® 0.000001 micro | 10° 1,000,000 | Mega
10°° 0.000000001 nano 10° 1,000,000,000 | Giga
1072 | 0.000000000001 pico 10'2 1,000,000,000,000 | Tera
107" | 0.000000000000001 femto | 10'° 1,000,000,000,000,000 | Peta
107'® | 0.0000000000000000001 atto ple 1,000,000,000,000,000,000 | Exa
102" | 0.0000000000000000000001 zepto | 107 1,000,000,000,000,000,000,000 | Zetta
102 | 0.0000000000000000000000001 | yocto | 10** | 1,000,000,000,000,000,000,000,000 | Yotta

The metric pre

DGS

18

Computer Hardware Review

Typical access time

1 nsec
2 nsec
10 nsec

10 msec

100 sec

Registers

Cache

Main memory

Magnetic disk

Magnetic tape

e Typical memory hierarchy

Typical capacity

<1 KB
1 MB
64-512 MB
5-50 GB

20-100 GB

— numbers shown are rough approximations

Interrupts

e Interrupt the normal sequencing of the
processor

e Most I/O devices are slower than the
processor

— Processor must pause to wait for device

Classes of Interrupts

Table 1.1 Classes of Interrupts

Program (Generated bv some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division bv zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
MEemory space.

Timer (Generated by a timer within the processor. This allows the operating svstem
to perform certain functions on a regular basis.

O Generated by an ['O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware faillure Generated by a failure, such as power failure or memory parity error.

Program Flow of Control

User 'O
SEECAI I

o | A7

WRITE .7 {

@)
.
@

™ “-... Handler

o Eﬁ. [
] X3 :

WRITE T, : @
T Pl s ;
“

1w
WRITE

{b) Interrupts; short I'O wait

Program Flow of Control

.-l.-l.-.-l-l.-l.—.
L
[}
=

Command

| @

Interrupt
Handler

END

e ey

Ll 4
* L] K
" * H a
. L] B i
.- - 1] 1]
I‘ .ll.llll] rFeeerErEEE
¥ el -
Fraly . P & e
L 5w g B
B T rt A L. -l.- Tag
[} L L. a -
" S L] i Tag T
L T ey . 5 - e
LT "e, v, s e, s,
L . -5 E . =
[= L . "y =
. Fay g # . L
. [E = F " . =
" 4 aa T b T * -.....-.-.-
L L .r-..... .
o -__ LI - +.—:.....+._++++++...+..+__++++._.+l+u.-_._ %
W ™
e

Ly weant

1o
=

¢} Interrupts; lor

F
.

Interrupt Stage

* Processor checks for interrupts
e |f interrupt

— Suspend execution of program

— Execute interrupt-handler routine

Transfer of Control via Interrupts

User Program Interrupt Handler

!

L []
[] []
-]
1
Interrupt
occeurs here i+1 4

M

Figure 1.6 Transfer of Control via Interrupts

Instruction Cycle with Interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupis
Disabled

Check for

Fetch next Execute imterrupi;
instruction instruction terrupts initiate inferrupt
handler

Enabled

HALT '

Figure 1.7 Instruction Cycle with Interrupts

Program Timing: Short I/0O Wait

Time _
Processor o @ 'o
wait operation operation
@ G | operm
operation
Processor Lo @
wait operation
(b) With interrupts
@ (circled numbers refer

to mumbers mm Figure 1 5b)

(a) Without interrupts
(eircled numbers refer
to mimbers in Figure 1 5a)

Figure 1.8 Program Timing: Short I/O Wait

Program Timing: Long I/O Wait

Time -
= —— A
Processor UO. @
wait Operation 10
operation
Processor
@ wait
- v
@ -
I'o
Processor o T operation
wailt operation Processor
wait
® -
@ (b) With interrupts
(circled numbers refer
to numbers in Figure 1.5¢)
(a) Without mterrupts
(circled numbers refer

to numbers in Figure 1.5a)

Figure 19 Program Timing: Long I/O Wait

Hardware

———A———

Device controller or
other system hardware
issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on
interrupt

Simple Interrupt Processing

Software

— A

v

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

Changes in Memory and Registers for
an Interrupt

T-M
Control 7 I
Stack -— |
! :I-J
N+l
Program
Counter
¥ | Shart E
Inferrupt General
Service Registers
¥ + L [Fetm| Routine
Stack
Pointer
Processor
T-M
N :“; User's
Program
Main
Memory

(a) Interrupt occurs after instruction
at location N

Changes in Memory and Registers for
an Interrupt

T-M
N+1
Control |
Stack [
T
wrsL+1
Program
Counter
¥ [Stard t
Interrupt General
Service Registers
¥+ L [Femm| Routine
Stack
Pointer
Processor
T
N .
N+l User's
Program
Main
Memory

(b} Return from interrupi

Sequential Interrupt Processing

Interrupt
User Program Handler X

/

3

/

Interrupt
Handler Y

(a) Sequential interrupt processing

Nested Interrupt Processing

Interrupt
User Program Handler X

/

x

g

<

Interrupt
andler Y

(b) Nested interrupt processing

Multiprogramming

e Processor has more than one program to
execute

* The sequence in which programs are executed
depend on their relative priority and whether
they are waiting for /0

e After an interrupt handler completes, control
may not return to the program that was
executing at the time of the interrupt

Programmed |I/O

/0 module performs the action,
not the processor

Sets the appropriate bits in the
/O status register

No interrupts occur

Processor checks status until
operation is complete

[ssue Read

= command to [CPU=I/O

[/O module

>l

Read status

of I/O I/O—=CPU
module
Not
Error
condition

Read word
from [/O I/O=CPU
Module

|

Write word
1INto Memory

CPU=-»memory

Next instruction

(a) Programmed I/'O

Interrupt-Driven I/0

Processor is interrupted when
/0 module ready to exchange
data

Processor saves context of
program executing and begins
executing interrupt-handler

Issue Read
=P command to
[/O module

Read status
Of I.'O
module

Ready

Read word
from /O
Module

!

Write word
info memory

Next instruction

CPU=I/O
Do something
else

= = == Interrupt

[/O=CPU
Error

condition

[/O=CPU

CPU=-»memory

(b) Interrupt-driven I/O

Issue Read CPU—=L/O
= command to Do something

VO module [~ = Pelse

Interrupt-Driven I/0

Read status
Of I.'O
module [/O=-»CPU

= = == Interrupt

* No needless waiting

* Consumes a lot of Frror
processor time because Ready
every word read or written Read wod W cou
passes through the I‘“I"‘mi""‘
rocessor Waite word |J.
p , inmtmemm}' CPU-»memory

Next instruction
(b) Interrupt-driven I/O

Direct Memory Access

¢ Tra nSfe I'S a bIOCk Of data Issue Read CPU—DMA

block command Do somethin g

directly to or from memory | oromedie f==ee

e Aninterruptis sent when Read satts B o - nrerriy
. of DMA :
the transfer is complete module ||DMA-»CPU
® |V|0re eff|C|ent Next illil‘llctiﬂll

(¢) Direct memory access

* Revision Ejercicios Clase |
Clase |

Operating System

A program that controls the execution of
application programs

 An interface between applications and
hardware

Layers and Views

End
User

Application Programs Operating-

Programmer

System
Designer

Utilities

Operating System

Computer Hardware

Figure 2.1 Layers and Views of a Computer System

Services Provided by the OS

 Program development
— Editors and debuggers

* Program execution
e Access I/O devices

Services Provided by the OS

e Controlled access to files
e System access

Services Provided by the OS

* Error detection and response
— Internal and external hardware errors
— Software errors

— Operating system cannot grant request of
application

Services Provided by the OS

 Accounting
— Collect usage statistics
— Monitor performance
— Used to anticipate future enhancements
— Used for billing purposes

Operating System

e Responsible for managing resources

 Functions same way as ordinary computer
software
— It is a program that is executed

 Operating system relinquishes control of the
processor

OS as Resource Manager

Computer System

I/O Devices

Memory
Operating L/'O Controller
System
Software
1/O Controller
L |
Programs .
and Data .
10 Controller
Processor a e e Processor

Figure 2.2 The Operating System as Resource Manager

Storage

05

Prcgrams

Printers,
keyboards,
digital camera,
etc.

Kernel

* Portion of operating system that is in main
memory
e Contains most frequently used functions

 Also called the nucleus

Evolution of Operating Systems

e Hardware upgrades plus new types of
hardware

e New services
e Fixes

Evolution of Operating Systems

e Serial processing
— No operating system

— Machines run from a console with display lights,
toggle switches, input device, and printer

Evolution of Operating Systems

e Serial processing
— Schedule time

— Setup included loading the compiler, source
program, saving compiled program, and loading
and linking

Serial Processing

Tape System

drlve tape Output
Card tape ¢ \ tape —
reader r‘ eSS 2lf-d)| Printer
' b Q“ L’J 0 Lg A 0 L’J g
IHIIIIIIHIIIIIIHIII (T (U
1401 7094 1401
(@) (b) (c) (d) (e) (f)

Steps:
a) bring cards to 1401
b) read cards to tape
¢, d) put tape on 7094 which does computing
e, f) put tape on 1401 which prints output

52

Evolution of Operating Systems

e Simple batch system

— Monitor
e Software that controls the sequence of events
e Batch jobs together
 Program returns control to monitor when finished

Job Control Language

e Special type of programming language
* Provides instruction to the monitor

— What compiler to use
— What data to use

Job Control Language Example

/$END
rd

_~———Data for program
i

A~ Fortran Program //

e
|
/$FORTRAN

A\JOB, 10,6610802, MARVIN TANENBAUM L/

Hardware Features

e Memory protection

— Does not allow the memory area containing the
monitor to be altered

 Timer

— Prevents a job from monopolizing the system

Hardware Features

e Privileged instructions

— Certain machine level instructions can only be
executed by the monitor

* |nterrupts

— Early computer models did not have this
capability

Memory Protection

e User program executes in user mode

— Certain instructions may not be executed

Memory Protection

 Monitor executes in system mode
— Kernel mode
— Privileged instructions are executed
— Protected areas of memory may be accessed

System Utilization Example

Fead one record from file 15 ps

Execute 100 instructions 1 s
Write one record to file 15 us
TOTAL 31 ps

Percent CPU Utilization = % =0032=32%

Figure 2.4 System Utilization Example

Uniprogramming

* Processor must wait for I/O instruction to
complete before proceeding

Program A Run Wait Run Wait

Time »
{a) Uniprogramming

Multiprogramming

e When one job needs to wait for 1/0, the
processor can switch to the other job

Program A

Program B

Combined

Run Wait Run Wait
Wait| Run Wait Run Wait
Run | Run . Run | Run .
A B Wait A B Wait
Time 3

i(b) Multiprogramming with two programs

Program A

Program B

Program C

Combined

Multiprogramming

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait Run Wait Run Wait
Run | Run | Run Wait Run | Run | Run Wait
A|B|C Al A|B|C al
Time b

(c) Multiprogramming with three programs

Multiprogramming system

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Three jobs in memory

Time Sharing Systems

e Using multiprogramming to handle multiple
interactive jobs

* Processor’s time is shared among multiple
users

 Multiple users simultaneously access the
system through terminals

Batch Multiprogramming versus Time

Sharing

Table 2.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming

Time Sharing

Principal objective

Maximize processor use

Minimize response time

Source of directives to
operating svstem

Job control language
commands provided with the
job

Commands entered at the

terminal

* Revision Ejercicios Clase |
Clase Ill

Process

e A program in execution

 Aninstance of a program running on a
computer

 The entity that can be assigned to and
executed on a processor

Process

* A unit of activity characterized by
— A single sequential thread of execution
— A current state
— An associated set of system resources

Difficulties with Designing System
Software

Improper synchronization

Failed mutual exclusion
Nondeterminate program operation
Deadlocks

Process

e Consists of three components
— An executable program
— Associated data needed by the program
— Execution context of the program

e All information the operating system needs to manage
the process

Process

Main Processor
Memory Registers
Processimdex[3§ |
PC 11—
i
Process Base
Tist j Limmit
/1
Other '
registers E .
/1
Context |
Process Data
A
Program
{code)
] %
Context
Process Data
E h
Program |
{code)

Figure 2.8 Typical Process Implementation

Memory Management

Process isolation

Automatic allocation and management
Support of modular programming
Protection and access control
Long-term storage

Virtual Memory

 Implements long-term store
e Information stored in named objects called
files

e Allows programmers to address memory from
a logical point of view

Information Protection and Security

e Availability

— Concerned with protecting the system against
Interruption

e Confidentiality

— Assuring that users cannot read data for which
access is unauthorized

Information Protection and Security

e Data integrity

— Protection of data from unauthorized
modification

e Authenticity

— Concerned with the proper verification of the
identity of users and the validity of messages or
data

Scheduling and Resource Management

e Fairness

— Give equal and fair access to resources

e Differential responsiveness

— Discriminate among different classes of jobs

Scheduling and Resource Management

e Efficiency

— Maximize throughput, minimize response time,
and accommodate as many uses as possible

Key Elements of an Operating System

Operating System
Service Call Service
from Process L Call
Handler (code)
Interrupt , ?Dg- E'r;]‘:lort- Q:fﬂ
from Process Interrupt Qlt:re:e Q::I'E:; enes
Interrupt . Handler (code)
from 10 Short-Term
Scheduler
(code)
¥
Pass Conirol
to Process

Figure 2.11 Key Elements of an Operating System for Multiprogramming

Modern Operating Systems

e Microkernel architecture

— Assigns only a few essential functions to the
kernel
e Address spaces
* Interprocess communication (IPC)
e Basic scheduling

Modern Operating Systems

 Multithreading

— Process is divided into threads that can run
concurrently

e Thread

— Dispatchable unit of work
— executes sequentially and is interruptable

* Process is a collection of one or more threads

Modern Operating Systems

e Symmetric multiprocessing (SMP)
— There are multiple processors

— These processors share same main memory and
|/0O facilities

— All processors can perform the same functions

Multiprogramming and
Multiprocessing

Time g
Process 1
Process 2
Process 3 s —
(a) Interleaving (muliiprogramming, one processor)
Process 1 Y | |
Process 2 Y 1
Process 3 s
(b} Imterleaving and overlapping (multiprocessing; two processors)
I Blocked 1 Rumning

Figure 2.12 Multiprogramming and Multiprocessing

Modern Operating Systems

e Distributed operating systems

— Provides the illusion of a single main memory
space and single secondary memory space

Modern Operating Systems

e Object-oriented design

— Used for adding modular extensions to a small
kernel

— Enables programmers to customize an operating
system without disrupting system integrity

%\i \ UNIX

 Hardware Is surrounded by the operating
system software

®

e Comes with a number of user services and

Interfaces
— Shell
— Components of the C compiler

j‘g,

B
,,xﬁGeneral UNIX Architecture

UNIX Commands

and Libraries

System Call
Interface

Kernel

User-written
Applications

g Figure 2.14 General UNIX Architecture K—%

\% Traditional UNIX Kernel

User Programs

1"1‘511:: \

| Libraries |
. e, Y
User Level W | T,

e R o h R Em

Kernel Level

| System Call Interface |
F 3 F
h
Il'lh':‘l'-l]l‘&[‘&ﬁ"x
communication
File Subsystem
. » Process
. Control Scheduler
5 Subsystem
- M
. Memory
@F;‘E lllﬂllflg’é‘ll]e]ll
W F
character block
Device Drivers
F 3
b
| Hardware Control |
Kernel Level
Hardware Level
| Hardware |

Figure 2.15 Traditional UNIX Kernel

B
xﬁ Modern UNIX Kernel

file mappi
Fpmes FFS

device
mAappings
s5fs

A0V

mappings

Common
Facilities

time-sharing
processes

system
processes

tape driver

tty

neiwork -
driver

driver

Figure 2.16 Modern UNIX Kernel [VAHA96]

B
xﬁ Modern UNIX Systems

e System V Release 4 (SVR4)
« BSD
e Solaris 10

-

2
3
\%3 LiNnux

 Does not use a microkernel approach

e Collection of loadable modules
— Dynamic linking
— Stackable modules

-

B
xﬁ Linux Kernel Modules

module module
*next gd *next
name *name
si7e size
usecount usecount
flags flags
nysms IY5ms
= j
:::;E EAT ﬂ VFAT
*deps *deps
*refs *refs
. symbol_table : symbol_table
* S value : — value
*name Fname
valoe value
*name Fname
. "
] L
] L}
value value
*name name

Figure 2.17 Example List of Linux Kernel Modules

B
xﬁ Linux Kernel Components

signals

2 system calls

Figure 2.18 Linux Kernel Components

network inter-
face controller

user level

kernel

hardware

