
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

HANDLING THE
CLIENT REQUEST:
HTTP REQUEST

HEADERS

Topics in This Chapter

• Reading HTTP request headers

• Building a table of all the request headers

• Understanding the various request headers

• Reducing download times by compressing pages

• Differentiating among types of browsers

• Customizing pages according to how users got there

• Accessing the standard CGI variables

147© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

5

One of the keys to creating effective servlets is understanding how to manipulate the
HyperText Transfer Protocol (HTTP). Thoroughly understanding this protocol is not
an esoteric, theoretical concept, but rather a practical issue that can have an immedi-
ate impact on the performance and usability of your servlets. This section discusses
the HTTP information that is sent from the browser to the server in the form of
request headers. It explains the most important HTTP 1.1 request headers, summa-
rizing how and why they would be used in a servlet. As we see later, request headers
are read and applied the same way in JSP pages as they are in servlets.

Note that HTTP request headers are distinct from the form (query) data discussed
in the previous chapter. Form data results directly from user input and is sent as part
of the URL for GET requests and on a separate line for POST requests. Request head-
ers, on the other hand, are indirectly set by the browser and are sent immediately fol-
lowing the initial GET or POST request line. For instance, the following example shows
an HTTP request that might result from a user submitting a book-search request to a
servlet at http://www.somebookstore.com/servlet/Search. The request includes the
headers Accept, Accept-Encoding, Connection, Cookie, Host, Referer, and
User-Agent, all of which might be important to the operation of the servlet, but
none of which can be derived from the form data or deduced automatically: the serv-
let needs to explicitly read the request headers to make use of this information.

GET /servlet/Search?keywords=servlets+jsp HTTP/1.1
Accept: image/gif, image/jpg, */*
Accept-Encoding: gzip
Connection: Keep-Alive
Cookie: userID=id456578

Chapter 5 ■ Handling the Client Request: HTTP Request Headers148

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Host: www.somebookstore.com
Referer: http://www.somebookstore.com/findbooks.html

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

5.1 Reading Request Headers

Reading headers is straightforward; just call the getHeader method of Http-
ServletRequest with the name of the header. This call returns a String if the
specified header was supplied in the current request, null otherwise. In HTTP 1.0,
all request headers are optional; in HTTP 1.1, only Host is required. So, always
check for null before using a request header.

Core Approach

Always check that the result of request.getHeader is non-null
before using it.

Header names are not case sensitive. So, for example, request.get-
Header("Connection") i s in te rchangeab le w i th request.get-
Header("connection").

Although getHeader is the general-purpose way to read incoming headers, a few
headers are so commonly used that they have special access methods in Http-
ServletRequest. Following is a summary.

• getCookies
The getCookies method returns the contents of the Cookie
header, parsed and stored in an array of Cookie objects. This method
is discussed in more detail in Chapter 8 (Handling Cookies).

• getAuthType and getRemoteUser
The getAuthType and getRemoteUser methods break the
Authorization header into its component pieces.

• getContentLength
The getContentLength method returns the value of the
Content-Length header (as an int).

• getContentType
The getContentType method returns the value of the
Content-Type header (as a String).

5.1 Reading Request Headers 149

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• getDateHeader and getIntHeader
The getDateHeader and getIntHeader methods read the
specified headers and then convert them to Date and int values,
respectively.

• getHeaderNames

Rather than looking up one particular header, you can use the
getHeaderNames method to get an Enumeration of all header
names received on this particular request. This capability is
illustrated in Section 5.2 (Making a Table of All Request Headers).

• getHeaders

In most cases, each header name appears only once in the request.
Occasionally, however, a header can appear multiple times, with each
occurrence listing a separate value. Accept-Language is one such
example. You can use getHeaders to obtain an Enumeration of the
values of all occurrences of the header.

Finally, in addition to looking up the request headers, you can get information on
the main request line itself (i.e., the first line in the example request just shown), also
by means of methods in HttpServletRequest. Here is a summary of the four
main methods.

• getMethod

The getMethod method returns the main request method (normally,
GET or POST, but methods like HEAD, PUT, and DELETE are possible).

• getRequestURI

The getRequestURI method returns the part of the URL that comes
after the host and port but before the form data. For example, for a URL
of http://randomhost.com/servlet/search.BookSearch?subject=jsp,
getRequestURI would return "/servlet/search.BookSearch".

• getQueryString

The getQueryString method returns the form data. For example,
with http://randomhost.com/servlet/search.BookSearch?subject=jsp,
getQueryString would return "subject=jsp".

• getProtocol

The getProtocol method returns the third part of the request line,
which is generally HTTP/1.0 or HTTP/1.1. Servlets should usually
check getProtocol before specifying response headers (Chapter 7)
that are specific to HTTP 1.1.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers150

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

5.2 Making a Table of
All Request Headers

Listing 5.1 shows a servlet that simply creates a table of all the headers it receives,
along with their associated values. It accomplishes this task by cal l ing
request.getHeaderNames to obtain an Enumeration of headers in the cur-
rent request. It then loops down the Enumeration, puts the header name in the
left table cell, and puts the result of getHeader in the right table cell. Recall that
Enumeration is a standard interface in Java; it is in the java.util package and
contains just two methods: hasMoreElements and nextElement.

The servlet also prints three components of the main request line (method, URI,
and protocol). Figures 5–1 and 5–2 show typical results with Netscape and Internet
Explorer.

Listing 5.1 ShowRequestHeaders.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Shows all the request headers sent on the current request. */

public class ShowRequestHeaders extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Servlet Example: Showing Request Headers";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "Request Method: " +
 request.getMethod() + "
\n" +
 "Request URI: " +
 request.getRequestURI() + "
\n" +
 "Request Protocol: " +

5.2 Making a Table of All Request Headers 151

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–1 Request headers sent by Netscape 7 on Windows 2000.

 request.getProtocol() + "

\n" +
 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Header Name<TH>Header Value");
 Enumeration headerNames = request.getHeaderNames();
 while(headerNames.hasMoreElements()) {
 String headerName = (String)headerNames.nextElement();
 out.println("<TR><TD>" + headerName);
 out.println(" <TD>" + request.getHeader(headerName));
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

 /** Since this servlet is for debugging, have it
 * handle GET and POST identically.
 */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 5.1 ShowRequestHeaders.java (continued)

Chapter 5 ■ Handling the Client Request: HTTP Request Headers152

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–2 Request headers sent by Internet Explorer 6 on Windows 2000.

5.3 Understanding HTTP 1.1
Request Headers

Access to the request headers permits servlets to perform a number of optimizations
and to provide a number of features not otherwise possible. This section summarizes
the headers most often used by servlets; for additional details on these and other
headers, see the HTTP 1.1 specification, given in RFC 2616. The official RFCs are
archived in a number of places; your best bet is to start at http://www.rfc-editor.org/
to get a current list of the archive sites. Note that HTTP 1.1 supports a superset of
the headers permitted in HTTP 1.0.

Accept
This header specifies the MIME types that the browser or other clients can
handle. A servlet that can return a resource in more than one format can exam-
ine the Accept header to decide which format to use. For example, images in
PNG format have some compression advantages over those in GIF, but not all
browsers support PNG. If you have images in both formats, your servlet can
call request.getHeader("Accept"), check for image/png, and if it
finds a match, use blah.png filenames in all the IMG elements it generates.
Otherwise, it would just use blah.gif.

5.3 Understanding HTTP 1.1 Request Headers 153

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

See Table 7.1 in Section 7.2 (Understanding HTTP 1.1 Response Headers) for
the names and meanings of the common MIME types.

Note that Internet Explorer 5 and 6 have a bug whereby the Accept header is
sent improperly when you reload a page. It is sent properly in the original
request, however.

Accept-Charset

This header indicates the character sets (e.g., ISO-8859-1) the browser can
use.

Accept-Encoding

This header designates the types of encodings that the client knows how to
handle. If the server receives this header, it is free to encode the page by using
one of the formats specified (usually to reduce transmission time), sending the
Content-Encoding response header to indicate that it has done so. This
encoding type is completely distinct from the MIME type of the actual docu-
ment (as specified in the Content-Type response header), since this encod-
ing is reversed before the browser decides what to do with the content. On the
other hand, using an encoding the browser doesn’t understand results in
incomprehensible pages. Consequently, it is critical that you explicitly check
the Accept-Encoding header before using any type of content encoding.
Values of gzip or compress are the two most common possibilities.

Compressing pages before returning them is a valuable service because the
cost of decoding is likely to be small compared with the savings in transmission
time. See Section 5.4 in which gzip compression is used to reduce download
times by a factor of more than 10.

Accept-Language

This header specifies the client’s preferred languages in case the servlet can
produce results in more than one language. The value of the header should be
one of the standard language codes such as en, en-us, da, etc. See RFC 1766
for details (start at http://www.rfc-editor.org/ to get a current list of the RFC
archive sites).

Authorization

This header is used by clients to identify themselves when accessing
password-protected Web pages. For details, see the chapters on Web applica-
tion security in Volume 2 of this book.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers154

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Connection
This header indicates whether the client can handle persistent HTTP connec-
tions. Persistent connections permit the client or other browser to retrieve
multiple files (e.g., an HTML file and several associated images) with a single
socket connection, thus saving the overhead of negotiating several independent
connections. With an HTTP 1.1 request, persistent connections are the
default, and the client must specify a value of close for this header to use
old-style connections. In HTTP 1.0, a value of Keep-Alive means that persis-
tent connections should be used.

Each HTTP request results in a new invocation of a servlet (i.e., a thread call-
ing the servlet’s service and doXxx methods), regardless of whether the
request is a separate connection. That is, the server invokes the servlet only
after the server has already read the HTTP request. This means that servlets
need to cooperate with the server to handle persistent connections. Conse-
quently, the servlet’s job is just to make it possible for the server to use persis-
tent connections; the servlet does so by setting the Content-Length
response header. For details, see Chapter 7 (Generating the Server Response:
HTTP Response Headers).

Content-Length
This header is applicable only to POST requests and gives the size of the POST data
in bytes. Rather than calling request.getIntHeader("Content-Length"),
you can simply use request.getContentLength(). However, since servlets
take care of reading the form data for you (see Chapter 4), you rarely use this
header explicitly.

Cookie
This header returns cookies to servers that previously sent them to the browser.
Never read this header directly because doing so would require cumbersome
low-level parsing; use request.getCookies instead. For details, see Chap-
ter 8 (Handling Cookies). Technically, Cookie is not part of HTTP 1.1. It was
originally a Netscape extension but is now widely supported, including in both
Netscape and Internet Explorer.

Host
In HTTP 1.1, browsers and other clients are required to specify this header,
which indicates the host and port as given in the original URL. Because of the
widespread use of virtual hosting (one computer handling Web sites for multi-
ple domain names), it is quite possible that the server could not otherwise
determine this information. This header is not new in HTTP 1.1, but in HTTP
1.0 it was optional, not required.

5.3 Understanding HTTP 1.1 Request Headers 155

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

If-Modified-Since
This header indicates that the client wants the page only if it has been changed
after the specified date. The server sends a 304 (Not Modified) header if no
newer result is available. This option is useful because it lets browsers cache
documents and reload them over the network only when they’ve changed.
However, servlets don’t need to deal directly with this header. Instead, they
should just implement the getLastModified method to have the system
handle modification dates automatically. For an example, see the lottery num-
bers servlet in Section 3.6 (The Servlet Life Cycle).

If-Unmodified-Since
This header is the reverse of If-Modified-Since; it specifies that the opera-
tion should succeed only if the document is older than the specified date. Typi-
cally, If-Modified-Since is used for GET requests (“give me the document
only if it is newer than my cached version”), whereas If-Unmodified-Since
is used for PUT requests (“update this document only if nobody else has changed
it since I generated it”). This header is new in HTTP 1.1.

Referer
This header indicates the URL of the referring Web page. For example, if you
are at Web page 1 and click on a link to Web page 2, the URL of Web page 1 is
included in the Referer header when the browser requests Web page 2. Most
major browsers set this header, so it is a useful way of tracking where requests
come from. This capability is helpful for tracking advertisers who refer people
to your site, for slightly changing content depending on the referring site, for
identifying when users first enter your application, or simply for keeping track
of where your traffic comes from. In the last case, most people rely on Web
server log files, since the Referer is typically recorded there. Although the
Referer header is useful, don’t rely too heavily on it since it can easily be
spoofed by a custom client. Also, note that, owing to a spelling mistake by one
of the original HTTP authors, this header is Referer, not the expected
Referrer.

Finally, note that some browsers (Opera), ad filters (Web Washer), and per-
sonal firewalls (Norton) screen out this header. Besides, even in normal situa-
tions, the header is only set when the user follows a link. So, be sure to follow
the approach you should be using with all headers anyhow: check for null
before using the header.

See Section 5.6 (Changing the Page According to How the User Got There) for
details and an example.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers156

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

User-Agent
This header identifies the browser or other client making the request and can be
used to return different content to different types of browsers. Be wary of this use
when dealing only with Web browsers; relying on a hard-coded list of browser ver-
sions and associated features can make for unreliable and hard-to-modify servlet
code. Whenever possible, use something specific in the HTTP headers instead.
For example, instead of trying to remember which browsers support gzip on
which platforms, simply check the Accept-Encoding header.

However, the User-Agent header is quite useful for distinguishing among
different categories of client. For example, Japanese developers might see
whether the User-Agent is an Imode cell phone (in which case they would
redirect to a chtml page), a Skynet cell phone (in which case they would redi-
rect to a wml page), or a Web browser (in which case they would generate
regular HTML).

Most Internet Explorer versions list a “Mozilla” (Netscape) version first in their
User-Agent line, with the real browser version listed parenthetically. The
Opera browser does the same thing. This deliberate misidentification is done
for compatibility with JavaScript; JavaScript developers often use the
User-Agent header to determine which JavaScript features are supported.
So, if you want to differentiate Netscape from Internet Explorer, you have to
check for the string “MSIE” or something more specific, not just the string
“Mozilla.” Also note that this header can be easily spoofed, a fact that calls into
question the reliability of sites that use this header to “show” market penetra-
tion of various browser versions.

See Section 5.5 (Differentiating Among Different Browser Types) for details
and an example.

5.4 Sending Compressed Web Pages

Gzip is a text compression scheme that can dramatically reduce the size of HTML
(or plain text) pages. Most recent browsers know how to handle gzipped content, so
the server can compress the document and send the smaller document over the net-
work, after which the browser will automatically reverse the compression (no user
action required) and treat the result in the normal manner. Sending such compressed
content can be a real time saver since the time required to compress the document
on the server and then uncompress it on the client is typically dwarfed by the time
saved in download time, especially when dialup connections are used.

5.4 Sending Compressed Web Pages 157

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

However, although most recent browsers support this capability, not all do. If you
send gzipped content to browsers that don’t support this capability, the browsers will
not be able to display the page at all. Fortunately, browsers that support this feature
indicate that they do so by setting the Accept-Encoding request header. Browsers
that support content encoding include most versions of Netscape for Unix, most ver-
sions of Internet Explorer for Windows, and Netscape 4.7 and later for Windows.
Earlier Netscape versions on Windows and Internet Explorer on non-Windows plat-
forms generally do not support content encoding.

Listing 5.2 shows a servlet that checks the Accept-Encoding header, sending a
compressed Web page to clients that support gzip encoding (as determined by the
isGzipSupported method of Listing 5.3) and sending a regular Web page to those
that don’t. The result (see Figure 5–3) yielded a compression of over 300-fold and a
speedup of more than a factor of 10 when a dialup connection was used. In repeated
tests with Netscape and Internet Explorer on a 28.8K modem connection, the com-
pressed page averaged less than 5 seconds to completely download, whereas the
uncompressed page consistently took more than 50 seconds. Results were less dra-
matic with faster connections, but the improvement was still significant. Gzip com-
pression is such a useful technique that we later present a filter that lets you apply
gzip compression to designated servlets or JSP pages without changing the actual
code of the individual resources. For details, see the chapter on servlet and JSP fil-
ters in Volume 2 of this book.

Core Tip

Gzip compression can dramatically reduce the download time of long
text pages.

DILBERT reprinted by permission of United Feature Syndicate, Inc.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers158

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Implementing compression is straightforward since support for the gzip format is
built in to the Java programming language by classes in java.util.zip. The servlet
first checks the Accept-Encoding header to see if it contains an entry for gzip. If so,
it uses a PrintWriter wrapped around a GZIPOutputStream and specifies gzip
as the value of the Content-Encoding response header. If gzip is not supported, the
servlet uses the normal PrintWriter and omits the Content-Encoding header.
To make it easy to compare regular and compressed performance with the same
browser, we also added a feature whereby we can suppress compression by including
?disableGzip at the end of the URL.

Listing 5.2 LongServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet with long output. Used to test
 * the effect of the gzip compression.
 */

public class LongServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");

 // Change the definition of "out" depending on whether
 // or not gzip is supported.
 PrintWriter out;
 if (GzipUtilities.isGzipSupported(request) &&
 !GzipUtilities.isGzipDisabled(request)) {
 out = GzipUtilities.getGzipWriter(response);
 response.setHeader("Content-Encoding", "gzip");
 } else {
 out = response.getWriter();
 }

 // Once "out" has been assigned appropriately, the
 // rest of the page has no dependencies on the type
 // of writer being used.

5.4 Sending Compressed Web Pages 159

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Long Page";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n");
 String line = "Blah, blah, blah, blah, blah. " +
 "Yadda, yadda, yadda, yadda.";
 for(int i=0; i<10000; i++) {
 out.println(line);
 }
 out.println("</BODY></HTML>");
 out.close(); // Needed for gzip; optional otherwise.
 }
}

Listing 5.3 GzipUtilities.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.zip.*;

/** Three small static utilities to assist with gzip encoding.
 *
 * isGzipSupported: does the browser support gzip?
 * isGzipDisabled: has the user passed in a flag
 * saying that gzip encoding should be disabled for
 * this request? (Useful so that you can measure
 * results with and without gzip on the same browser).
 * getGzipWriter: return a gzipping PrintWriter.
 *
 */

public class GzipUtilities {

 /** Does the client support gzip? */

Listing 5.2 LongServlet.java (continued)

Chapter 5 ■ Handling the Client Request: HTTP Request Headers160

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–3 Since the Windows version of Internet Explorer 6 supports gzip, this page
was sent gzipped over the network and automatically reconstituted by the browser,
resulting in a large saving in download time.

 public static boolean isGzipSupported
 (HttpServletRequest request) {
 String encodings = request.getHeader("Accept-Encoding");
 return((encodings != null) &&
 (encodings.indexOf("gzip") != -1));
 }

 /** Has user disabled gzip (e.g., for benchmarking)? */

 public static boolean isGzipDisabled
 (HttpServletRequest request) {
 String flag = request.getParameter("disableGzip");
 return((flag != null) && (!flag.equalsIgnoreCase("false")));
 }

 /** Return gzipping PrintWriter for response. */

 public static PrintWriter getGzipWriter
 (HttpServletResponse response) throws IOException {
 return(new PrintWriter
 (new GZIPOutputStream
 (response.getOutputStream())));
 }
}

Listing 5.3 GzipUtilities.java (continued)

5.5 Differentiating Among Different Browser Types 161

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

5.5 Differentiating Among
Different Browser Types

The User-Agent header identifies the specific browser that is making the request.
Although use of this header appears straightforward at first glance, a few subtleties
are involved:

• Use User-Agent only when necessary. Otherwise, you will have
difficult-to-maintain code that consists of tables of browser versions
and associated capabilities. For example, instead of remembering that
the Windows version of Internet Explorer 5 supports gzip
compression but the MacOS version doesn’t, check the
Accept-Encoding header. Instead of remembering which browsers
support Java and which don’t, use the APPLET tag with fallback code
between <APPLET> and </APPLET>.

• Check for null. Sure, all major browser versions send the
User-Agent header. But, the header is not required by the HTTP
1.1 specification, some browsers let you disable it (e.g., Opera), and
custom clients (e.g., Web spiders or link verifiers) might not use the
header at all. In fact, you should always check that the result of
request.getHeader is non-null before trying to use it, regardless
of which header you are dealing with.

• To differentiate between Netscape and Internet Explorer,
check for “MSIE,” not “Mozilla.” Both Netscape and Internet
Explorer say “Mozilla” at the beginning of the header, even though
Mozilla is the Godzilla-like Netscape mascot. This characteristic is for
compatibility with JavaScript.

• Note that the header can be faked. Some browsers let the user
change the value of this header. Even if the browser didn’t allow this,
the user could always use a custom client. If a client fakes this header,
the servlet cannot tell the difference.

Listing 5.4 shows a servlet that sends browser-specific insults to users. For the
sake of simplicity, it assumes that Internet Explorer and Netscape are the only two
browsers being used. Specifically, it assumes that any browser whose User-Agent
contains “MSIE” is Internet Explorer and any whose User-Agent does not is
Netscape. Figures 5–4 and 5–5 show the results.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers162

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 5.4 BrowserInsult.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that gives browser-specific insult.
 * Illustrates how to use the User-Agent
 * header to tell browsers apart.
 */

public class BrowserInsult extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title, message;
 // Assume for simplicity that Netscape and IE are
 // the only two browsers.
 String userAgent = request.getHeader("User-Agent");
 if ((userAgent != null) &&
 (userAgent.indexOf("MSIE") != -1)) {
 title = "Microsoft Minion";
 message = "Welcome, O spineless slave to the " +
 "mighty empire.";
 } else {
 title = "Hopeless Netscape Rebel";
 message = "Enjoy it while you can. " +
 "You <I>will</I> be assimilated!";
 }
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 message + "\n" +
 "</BODY></HTML>");
 }
}

5.6 Changing the Page According to How the User Got There 163

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–4 The BrowserInsult servlet as viewed by a Netscape user.

Figure 5–5 The BrowserInsult servlet as viewed by an Internet Explorer user.

5.6 Changing the Page According to
How the User Got There

The Referer header designates the location of the page users were on when they
clicked a link to get to the current page. If users simply type the address of a page,
the browser sends no Referer at all and request.getHeader("Referer")
returns null.

This header enables you to customize the page depending on how the user
reached it. For example, you could use this header to do the following:

• Create a jobs/careers site that takes on the look and feel of the
associated site that links to it.

• Change the content of a page depending on whether the link came
from inside or outside the firewall. (Do not use this trick for secure
applications, however; the Referer header, like all headers, is easily
forged.)

Chapter 5 ■ Handling the Client Request: HTTP Request Headers164

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Supply links that take users back to the page they came from.
• Track the effectiveness of banner ads or record click-through rates

from various different sites that display your ads.

Listing 5.5 shows a servlet that uses the Referer header to customize the image
it displays. If the address of the referring page contains the string “JRun,” the servlet
displays the logo of Macromedia JRun. If the address contains the string “Resin,” the
servlet displays the logo of Caucho Resin. Otherwise, the servlet displays the logo of
Apache Tomcat. The servlet also displays the address of the referring page.

Listing 5.6 shows the HTML pages used to link to the servlet. We created three
identical pages named JRun-Referer.html, Resin-Referer.html, and Tomcat-Ref-
erer.html; the servlet uses the name of the referring page, not form data, to distin-
guish among the three. Recall that HTML pages are placed in the top-level directory
of your Web application (or an arbitrary subdirectory thereof), whereas servlet code
is placed in a subdirectory of WEB-INF/classes that matches the package name. So, for
example, with Tomcat and the default Web application, the HTML pages are placed
in install_dir/webapps/ROOT/request-headers/ and accessed with URLs of the form
http://hostname/request-headers/Xxx-Referer.html.

Figures 5–6 through 5–9 show some representative results.

Listing 5.5 CustomizeImage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that displays referer-specific image. */

public class CustomizeImage extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String referer = request.getHeader("Referer");
 if (referer == null) {
 referer = "<I>none</I>";
 }
 String title = "Referring page: " + referer;
 String imageName;
 if (contains(referer, "JRun")) {
 imageName = "jrun-powered.gif";

5.6 Changing the Page According to How the User Got There 165

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 } else if (contains(referer, "Resin")) {
 imageName = "resin-powered.gif";
 } else {
 imageName = "tomcat-powered.gif";
 }
 String imagePath = "../request-headers/images/" + imageName;
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER><H2>" + title + "</H2>\n" +
 "\n" +
 "</CENTER></BODY></HTML>");
 }

 private boolean contains(String mainString,
 String subString) {
 return(mainString.indexOf(subString) != -1);
 }
}

Listing 5.6 JRun-Referer.html (identical to Tomcat-Referer.html and
Resin-Referer.html)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Referer Test</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Referer Test</H1>
Click here
to visit the servlet.
</BODY></HTML>

Listing 5.5 CustomizeImage.java (continued)

Chapter 5 ■ Handling the Client Request: HTTP Request Headers166

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–6 The CustomizeImage servlet when the address of the referring page
contains the string “JRun.”

Figure 5–7 The CustomizeImage servlet when the address of the referring page
contains the string “Resin.”

Figure 5–8 The CustomizeImage servlet when the address of the referring page
contains neither “JRun” nor “Resin.”

5.7 Accessing the Standard CGI Variables 167

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–9 The CustomizeImage servlet when the Referer header is missing.
When using the Referer header, always handle the case in which the result of
getHeader is null.

5.7 Accessing the Standard
CGI Variables

If you come to servlets with a background in traditional Common Gateway Interface
(CGI) programming, you are probably used to the idea of “CGI variables.” These are
a somewhat eclectic collection of information about the current request. Some are
based on the HTTP request line and headers (e.g., form data), others are derived
from the socket itself (e.g., the name and IP address of the requesting host), and still
others are taken from server installation parameters (e.g., the mapping of URLs to
actual paths).

Although it probably makes more sense to think of different sources of data (request
data, server information, etc.) as distinct, experienced CGI programmers may find it
useful to see the servlet equivalent of each of the CGI variables. If you don’t have a
background in traditional CGI, first, count your blessings; servlets are easier to use,
more flexible, and more efficient than standard CGI. Second, just skim this section,
noting the parts not directly related to the incoming HTTP request. In particular,
observe that you can use getServletContext().getRealPath to map a URI
(the part of the URL that comes after the host and port) to an actual path and that you
can use request.getRemoteHost and request.getRemoteAddress to get the
name and IP address of the client.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers168

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Servlet Equivalent of CGI Variables

For each standard CGI variable, this subsection summarizes its purpose and the means
of accessing it from a servlet. Assume request is the HttpServletRequest sup-
plied to the doGet and doPost methods.

AUTH_TYPE

If an Authorization header was supplied, this variable gives the scheme
specified (basic or digest). Access it with request.getAuthType().

CONTENT_LENGTH

For POST requests only, this variable stores the number of bytes of data
sent, as given by the Content-Length request header. Technically,
since the CONTENT_LENGTH CGI variable is a string, the servlet
equivalent is String.valueOf(request.getContentLength())
or request.getHeader("Content-Length"). You’ll probably want to
just call request.getContentLength(), which returns an int.

CONTENT_TYPE

CONTENT_TYPE designates the MIME type of attached data, if specified. See
Table 7.1 in Section 7.2 (Understanding HTTP 1.1 Response Headers) for the
names and meanings of the common MIME types. Access CONTENT_TYPE
with request.getContentType().

 DOCUMENT_ROOT

The DOCUMENT_ROOT variable specifies the real directory corresponding to
the URL http://host/. Access it with getServletContext().get-
RealPath("/"). Also, you can use getServletContext().getRealPath
to map an arbitrary URI (i.e., URL suffix that comes after the hostname and
port) to an actual path on the local machine.

HTTP_XXX_YYY

Variables of the form HTTP_HEADER_NAME are how CGI programs
access arbitrary HTTP request headers. The Cookie header becomes
HTTP_COOKIE, User-Agent becomes HTTP_USER_AGENT, Referer
becomes HTTP_REFERER, and so forth. Servlets should just use
request.getHeader or one of the shortcut methods described in Section
5.1 (Reading Request Headers).

5.7 Accessing the Standard CGI Variables 169

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

PATH_INFO
This variable supplies any path information attached to the URL after
the address of the servlet but before the query data. For example, with
http://host/servlet/coreservlets.SomeServlet/foo/bar?baz=quux, the path
information is /foo/bar. Since servlets, unlike standard CGI programs,
can talk directly to the server, they don’t need to treat path information
specially. Path information could be sent as part of the regular form data
and then translated by getServletContext().getRealPath. Access
the value of PATH_INFO by using request.getPathInfo().

PATH_TRANSLATED
PATH_TRANSLATED gives the path information mapped to a real path on the
server. Again, with servlets there is no need to have a special case for path
information, since a servlet can call getServletContext().getRealPath
to translate partial URLs into real paths. This translation is not possible with
standard CGI because the CGI program runs entirely separately from the
server. Access this variable by means of request.getPathTranslated().

QUERY_STRING
For GET requests, this variable gives the attached data as a single string with
values still URL-encoded. You rarely want the raw data in servlets; instead, use
request.getParameter to access individual parameters, as described in
Section 5.1 (Reading Request Headers). However, if you do want the raw data,
you can get it with request.getQueryString().

REMOTE_ADDR
This variable designates the IP address of the client that made the
request, as a String (e.g., "198.137.241.30"). Access it by calling
request.getRemoteAddr().

REMOTE_HOST
REMOTE_HOST indicates the fully qualified domain name (e.g., white-
house.gov) of the client that made the request. The IP address is returned if
the domain name cannot be determined. You can access this variable with
request.getRemoteHost().

REMOTE_USER
If an Authorization header was supplied and decoded by the server itself,
the REMOTE_USER variable gives the user part, which is useful for session
tracking in protected sites. Access it with request.getRemoteUser(). For
decoding Authorization information directly in servlets, see the chapters
on Web application security in Volume 2 of this book.

Chapter 5 ■ Handling the Client Request: HTTP Request Headers170

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

REQUEST_METHOD
This variable stipulates the HTTP request type, which is usually GET or POST
but is occasionally HEAD, PUT, DELETE, OPTIONS, or TRACE. Servlets rarely
need to look up REQUEST_METHOD explicitly, since each of the request types is
typically handled by a different servlet method (doGet, doPost, etc.). An
exception is HEAD, which is handled automatically by the service method
returning whatever headers and status codes the doGet method would use.
Access this variable by means of request.getMethod().

SCRIPT_NAME
This variable specifies the path to the servlet, relative to the server’s root direc-
tory. It can be accessed through request.getServletPath().

SERVER_NAME
SERVER_NAME gives the host name of the server machine. It can be accessed
by means of request.getServerName().

SERVER_PORT
This variable stores the port the server is listening on. Technically, the servlet
equivalent is String.valueOf(request.getServerPort()), which
returns a String. You’ll usually just want request.getServerPort(),
which returns an int.

SERVER_PROTOCOL
The SERVER_PROTOCOL variable indicates the protocol name and version
used in the request line (e.g., HTTP/1.0 or HTTP/1.1). Access it by calling
request.getProtocol().

SERVER_SOFTWARE
This variable gives identifying information about the Web server. Access it by
means of getServletContext().getServerInfo().

A Servlet That Shows the CGI Variables

Listing 5.7 presents a servlet that creates a table showing the values of all the CGI
variables other than HTTP_XXX_YYY, which are just the HTTP request headers
described in Section 5.3. Figure 5–10 shows the result for a typical request.

5.7 Accessing the Standard CGI Variables 171

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 5.7 ShowCGIVariables.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Creates a table showing the current value of each
 * of the standard CGI variables.
 */

public class ShowCGIVariables extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String[][] variables =
 { { "AUTH_TYPE", request.getAuthType() },
 { "CONTENT_LENGTH",
 String.valueOf(request.getContentLength()) },
 { "CONTENT_TYPE", request.getContentType() },
 { "DOCUMENT_ROOT",
 getServletContext().getRealPath("/") },
 { "PATH_INFO", request.getPathInfo() },
 { "PATH_TRANSLATED", request.getPathTranslated() },
 { "QUERY_STRING", request.getQueryString() },
 { "REMOTE_ADDR", request.getRemoteAddr() },
 { "REMOTE_HOST", request.getRemoteHost() },
 { "REMOTE_USER", request.getRemoteUser() },
 { "REQUEST_METHOD", request.getMethod() },
 { "SCRIPT_NAME", request.getServletPath() },
 { "SERVER_NAME", request.getServerName() },
 { "SERVER_PORT",
 String.valueOf(request.getServerPort()) },
 { "SERVER_PROTOCOL", request.getProtocol() },
 { "SERVER_SOFTWARE",
 getServletContext().getServerInfo() }
 };
 String title = "Servlet Example: Showing CGI Variables";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";

Chapter 5 ■ Handling the Client Request: HTTP Request Headers172

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 "<H1>" + title + "</H1>\n" +
 "<TABLE BORDER=1>\n" +
 " <TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>CGI Variable Name<TH>Value");
 for(int i=0; i<variables.length; i++) {
 String varName = variables[i][0];
 String varValue = variables[i][1];
 if (varValue == null)
 varValue = "<I>Not specified</I>";
 out.println(" <TR><TD>" + varName + "<TD>" + varValue);
 }
 out.println("</TABLE></CENTER></BODY></HTML>");
 }

 /** POST and GET requests handled identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 5.7 ShowCGIVariables.java (continued)

5.7 Accessing the Standard CGI Variables 173

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 5–10 The standard CGI variables for a typical request.

