
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

ACCESSING DATABASES
WITH JDBC

Topics in This Chapter

• Connecting to databases: the seven basic steps

• Simplifying JDBC usage: some utilities

• Using precompiled (parameterized) queries

• Creating and executing stored procedures

• Updating data through transactions

• Using JDO and other object-to-relational mappings

499© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

17

JDBC provides a standard library for accessing relational databases. By using the
JDBC API, you can access a wide variety of SQL databases with exactly the same
Java syntax. It is important to note that although the JDBC API standardizes the
approach for connecting to databases, the syntax for sending queries and commit-
ting transactions, and the data structure representing the result, JDBC does not
attempt to standardize the SQL syntax. So, you can use any SQL extensions your
database vendor supports. However, since most queries follow standard SQL syn-
tax, using JDBC lets you change database hosts, ports, and even database vendors
with minimal changes to your code.

Officially, JDBC is not an acronym and thus does not stand for anything. Unoffi-
cially, “Java DataBase Connectivity” is commonly used as the long form of the name.

DILBERT reprinted by permission of United Feature Syndicate, Inc.

Chapter 17 ■ Accessing Databases with JDBC500

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Although a complete tutorial on database programming is beyond the scope of
this chapter, we cover the basics of using JDBC in Section 17.1 (Using JDBC in Gen-
eral), presuming you are already familiar with SQL.

After covering JDBC basics, in Section 17.2 (Basic JDBC Examples) we present
some JDBC examples that access a Microsoft Access database.

To simplify the JDBC code throughout the rest of the chapter, we provide some
utilities for creating connections to databases in Section 17.3 (Simplifying Database
Access with JDBC Utilities).

In Section 17.4 (Using Prepared Statements), we discuss prepared statements,
which let you execute similar SQL statements multiple times; this can be more effi-
cient than executing a raw query each time.

In Section 17.5 (Creating Callable Statements), we examine callable statements.
Callable statements let you execute database stored procedures or functions.

In Section 17.6 (Using Database Transactions), we cover transaction management
for maintaining database integrity. By executing changes to the database within a
transaction, you can ensure that the database values are returned to their original
state if a problem occurs.

In Section 17.7, we briefly examine object-to-relational mapping (ORM). ORM
frameworks provide a complete object-oriented approach to manage information in a
database. With ORM, you simply call methods on objects instead of directly using
JDBC and SQL.

For advanced JDBC topics including accessing databases with custom JSP
tags, using data sources with JNDI, and increasing performance by pooling data-
base connections, see Volume 2 of this book. For more details on JDBC, see
http://java.sun.com/products/jdbc/, the online API for java.sql, or the JDBC
tutorial at http://java.sun.com/docs/books/tutorial/jdbc/.

17.1 Using JDBC in General

In this section we present the seven standard steps for querying databases. In Section
17.2 we give two simple examples (a command-line program and a servlet) illustrat-
ing these steps to query a Microsoft Access database.

Following is a summary; details are given in the rest of the section.

1. Load the JDBC driver. To load a driver, you specify the classname
of the database driver in the Class.forName method. By doing so,
you automatically create a driver instance and register it with the
JDBC driver manager.

17.1 Using JDBC in General 501

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

2. Define the connection URL. In JDBC, a connection URL specifies
the server host, port, and database name with which to establish a
connection.

3. Establish the connection. With the connection URL, username,
and password, a network connection to the database can be estab-
lished. Once the connection is established, database queries can be
performed until the connection is closed.

4. Create a Statement object. Creating a Statement object enables
you to send queries and commands to the database.

5. Execute a query or update. Given a Statement object, you can
send SQL statements to the database by using the execute,
executeQuery, executeUpdate, or executeBatch methods.

6. Process the results. When a database query is executed, a
ResultSet is returned. The ResultSet represents a set of rows
and columns that you can process by calls to next and various
getXxx methods.

7. Close the connection. When you are finished performing queries
and processing results, you should close the connection, releasing
resources to the database.

Load the JDBC Driver
The driver is the piece of software that knows how to talk to the actual database
server. To load the driver, you just load the appropriate class; a static block in the
driver class itself automatically makes a driver instance and registers it with the
JDBC driver manager. To make your code as flexible as possible, avoid hard-coding
the reference to the classname. In Section 17.3 (Simplifying Database Access with
JDBC Utilities) we present a utility class to load drivers from a Properties file so
that the classname is not hard-coded in the program.

These requirements bring up two interesting questions. First, how do you load a
class without making an instance of it? Second, how can you refer to a class whose
name isn’t known when the code is compiled? The answer to both questions is to use
Class.forName. This method takes a string representing a fully qualified class-
name (i.e., one that includes package names) and loads the corresponding class. This
call could throw a ClassNotFoundException, so it should be inside a try/catch
block as shown below.

try {
Class.forName("connect.microsoft.MicrosoftDriver");
Class.forName("oracle.jdbc.driver.OracleDriver");
Class.forName("com.sybase.jdbc.SybDriver");

} catch(ClassNotFoundException cnfe) {
System.err.println("Error loading driver: " + cnfe);

}

Chapter 17 ■ Accessing Databases with JDBC502

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

One of the beauties of the JDBC approach is that the database server requires no
changes whatsoever. Instead, the JDBC driver (which is on the client) translates calls
written in the Java programming language into the native format required by the
server. This approach means that you have to obtain a JDBC driver specific to the
database you are using and that you will need to check the vendor’s documentation
for the fully qualified class name to use.

In principle, you can use Class.forName for any class in your CLASSPATH. In
practice, however, most JDBC driver vendors distribute their drivers inside JAR files.
So, during development be sure to include the path to the driver JAR file in your
CLASSPATH setting. For deployment on a Web server, put the JAR file in the
WEB-INF/lib directory of your Web application (see Chapter 2, “Server Setup and Con-
figuration”). Check with your Web server administrator, though. Often, if multiple
Web applications are using the same database drivers, the administrator will place the
JAR file in a common directory used by the server. For example, in Apache Tomcat,
JAR files common to multiple applications can be placed in install_dir/common/lib.

Core Note

You can place your JDBC driver file (JAR file) in the WEB-INF/lib directory
for deployment of your application. However, the administrator may
choose to move the JAR file to a common library directory on the server.

Figure 17–1 illustrates two common JDBC driver implementations. The first
approach is a JDBC-ODBC bridge, and the second approach is a pure Java imple-
mentation. A driver that uses the JDBC-ODBC bridge approach is known as a Type I
driver. Since many databases support Open DataBase Connectivity (ODBC) access,
the JDK includes a JDBC-ODBC bridge to connect to databases. However, you
should use the vendor’s pure Java driver, if available, because the JDBC-ODBC
driver implementation is slower than a pure Java implementation. Pure Java drivers
are known as Type IV. The JDBC specification defines two other driver types, Type
II and Type III; however, they are less common. For additional details on driver
types, see http://java.sun.com/products/jdbc/driverdesc.html.

In the initial examples in this chapter, we use the JDBC-ODBC bridge, included
with JDK 1.4, to connect to a Microsoft Access database. In later examples we use
pure Java drivers to connect to MySQL and Oracle9i databases.

17.1 Using JDBC in General 503

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

In Section 18.1 (Configuring Microsoft Access for Use with JDBC), we provide
driver information for Microsoft Access. Driver information for MySQL is provided
in Section 18.2 (Installing and Configuring MySQL), and driver information for Ora-
cle is provided in Section 18.3 (Installing and Configuring Oracle9i Database). Most
other database vendors supply free JDBC drivers for their databases. For an
up-to-date list of these and third-party drivers, see http://industry.java.sun.com/
products/jdbc/drivers/.

Figure 17–1 Two common JDBC driver implementations. JDK 1.4 includes a
JDBC-ODBC bridge; however, a pure JDBC driver (provided by the vendor) yields better
performance.

Java Application

JDBC Driver Manager

JDBC API

JDBC-ODBC

Bridge

JDBC Driver API

Vendor-Specific

JDBC Driver

Vendor-Specific

ODBC Driver

Database

Database

Chapter 17 ■ Accessing Databases with JDBC504

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Define the Connection URL
Once you have loaded the JDBC driver, you must specify the location of the database
server. URLs referring to databases use the jdbc: protocol and embed the server
host, port, and database name (or reference) within the URL. The exact format is
defined in the documentation that comes with the particular driver, but here are a
few representative examples.

String host = "dbhost.yourcompany.com";
String dbName = "someName";
int port = 1234;
String oracleURL = "jdbc:oracle:thin:@" + host +

":" + port + ":" + dbName;
String sybaseURL = "jdbc:sybase:Tds:" + host +

":" + port + ":" + "?SERVICENAME=" + dbName;
String msAccessURL = "jdbc:odbc:" + dbName;

Establish the Connection
To make the actual network connection, pass the URL, database username, and
database password to the getConnection method of the DriverManager class,
as illustrated in the following example. Note that getConnection throws an
SQLException, so you need to use a try/catch block. We’re omitting this block
from the following example since the methods in the following steps throw the same
exception, and thus you typically use a single try/catch block for all of them.

String username = "jay_debesee";
String password = "secret";
Connection connection =

DriverManager.getConnection(oracleURL, username, password);

The Connection class includes other useful methods, which we briefly describe
below. The first three methods are covered in detail in Sections 17.4–17.6.

• prepareStatement. Creates precompiled queries for submission to
the database. See Section 17.4 (Using Prepared Statements) for
details.

• prepareCall. Accesses stored procedures in the database. For
details, see Section 17.5 (Creating Callable Statements).

• rollback/commit. Controls transaction management. See Section
17.6 (Using Database Transactions) for details.

• close. Terminates the open connection.
• isClosed. Determines whether the connection timed out or was

explicitly closed.

17.1 Using JDBC in General 505

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

An optional part of establishing the connection is to look up information about the
database with the getMetaData method. This method returns a DatabaseMeta-
Data object that has methods with which you can discover the name and version of the
database itself (getDatabaseProductName, getDatabaseProductVersion) or
of the JDBC driver (getDriverName, getDriverVersion). Here is an example.

DatabaseMetaData dbMetaData = connection.getMetaData();
String productName =
dbMetaData.getDatabaseProductName();

System.out.println("Database: " + productName);
String productVersion =
dbMetaData.getDatabaseProductVersion();

System.out.println("Version: " + productVersion);

Create a Statement Object
A Statement object is used to send queries and commands to the database. It is
created from the Connection using createStatement as follows.

Statement statement = connection.createStatement();

Most, but not all, database drivers permit multiple concurrent Statement
objects to be open on the same connection.

Execute a Query or Update
Once you have a Statement object, you can use it to send SQL queries by using the
executeQuery method, which returns an object of type ResultSet. Here is an
example.

String query = "SELECT col1, col2, col3 FROM sometable";
ResultSet resultSet = statement.executeQuery(query);

The following list summarizes commonly used methods in the Statement class.

• executeQuery. Executes an SQL query and returns the data in a
ResultSet. The ResultSet may be empty, but never null.

• executeUpdate. Used for UPDATE, INSERT, or DELETE commands.
Returns the number of rows affected, which could be zero. Also
provides support for Data Definition Language (DDL) commands, for
example, CREATE TABLE, DROP TABLE, and ALTER TABLE.

• executeBatch. Executes a group of commands as a unit, returning
an array with the update counts for each command. Use addBatch to
add a command to the batch group. Note that vendors are not
required to implement this method in their driver to be JDBC
compliant.

Chapter 17 ■ Accessing Databases with JDBC506

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• setQueryTimeout. Specifies the amount of time a driver waits for
the result before throwing an SQLException.

• getMaxRows/setMaxRows. Determines the number of rows a
ResultSet may contain. Excess rows are silently dropped. The
default is zero for no limit.

In addition to using the methods described here to send arbitrary commands, you
can use a Statement object to create parameterized queries by which values are
supplied to a precompiled fixed-format query. See Section 17.4 (Using Prepared
Statements) for details.

Process the Results

The simplest way to handle the results is to use the next method of ResultSet to
move through the table a row at a time. Within a row, ResultSet provides various
getXxx methods that take a column name or column index as an argument and
return the result in a variety of different Java types. For instance, use getInt if the
value should be an integer, getString for a String, and so on for most other data
types. If you just want to display the results, you can use getString for most of the
column types. However, if you use the version of getXxx that takes a column index
(rather than a column name), note that columns are indexed starting at 1 (following
the SQL convention), not at 0 as with arrays, vectors, and most other data structures
in the Java programming language.

Core Warning

The first column in a ResultSet row has index 1, not 0.

Here is an example that prints the values of the first two columns and the first
name and last name, for all rows of a ResultSet.

while(resultSet.next()) {

 System.out.println(resultSet.getString(1) + " " +

 resultSet.getString(2) + " " +

 resultSet.getString("firstname") + " "

 resultSet.getString("lastname"));

}

We suggest that when you access the columns of a ResultSet, you use the col-
umn name instead of the column index. That way, if the column structure of the table
changes, the code interacting with the ResultSet will be less likely to fail.

17.1 Using JDBC in General 507

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Approach

Use the column name instead of the column index when accessing data
in a ResultSet.

In JDBC 1.0, you can only move forward in the ResultSet; however, in JDBC
2.0, you can move forward (next) and backward (previous) in the ResultSet as
well as move to a particular row (relative, absolute). In Volume 2 of this book,
we present several custom tags that illustrate the JDBC 2.0 methods available in a
ResultSet.

Be aware that neither JDBC 1.0 nor JDBC 2.0 provides a direct mechanism to
determine the JDBC version of the driver. In JDBC 3.0, this problem is resolved by
the addition of getJDBCMajorVersion and getJDBCMinorVersion methods to
the DatabaseMetaData class. If the JDBC version is not clear from the vendor’s
documentation, you can write a short program to obtain a ResultSet and attempt a
previous operation on the ResultSet. Since resultSet.previous is only
available in JDBC 2.0 and later, a JDBC 1.0 driver would throw an exception at this
point. See Section 18.4 (Testing Your Database Through a JDBC Connection) for an
example program that performs a nonrigorous test to determine the JDBC version of
your database driver.

The following list summarizes useful ResultSet methods.

• next/previous. Moves the cursor to the next (any JDBC version) or
previous (JDBC version 2.0 or later) row in the ResultSet,
respectively.

• relative/absolute. The relative method moves the cursor a
relative number of rows, either positive (up) or negative (down). The
absolute method moves the cursor to the given row number. If the
absolute value is negative, the cursor is positioned relative to the end
of the ResultSet (JDBC 2.0).

• getXxx. Returns the value from the column specified by the column
name or column index as an Xxx Java type (see java.sql.Types).
Can return 0 or null if the value is an SQL NULL.

• wasNull. Checks whether the last getXxx read was an SQL NULL.
This check is important if the column type is a primitive (int, float,
etc.) and the value in the database is 0. A zero value would be
indistinguishable from a database value of NULL, which is also
returned as a 0. If the column type is an object (String, Date, etc.),
you can simply compare the return value to null.

• findColumn. Returns the index in the ResultSet corresponding to
the specified column name.

Chapter 17 ■ Accessing Databases with JDBC508

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• getRow. Returns the current row number, with the first row starting
at 1 (JDBC 2.0).

• getMetaData. Returns a ResultSetMetaData object describing
the ResultSet. ResultSetMetaData gives the number of
columns and the column names.

The getMetaData method is particularly useful. Given only a ResultSet, you
have to know the name, number, and type of the columns to be able to process the
table properly. For most fixed-format queries, this is a reasonable expectation. For ad
hoc queries, however, it is useful to be able to dynamically discover high-level infor-
mation about the result. That is the role of the ResultSetMetaData class: it lets
you determine the number, names, and types of the columns in the ResultSet.

Useful ResultSetMetaData methods are described below.

• getColumnCount. Returns the number of columns in the
ResultSet.

• getColumnName. Returns the database name of a column (indexed
starting at 1).

• getColumnType. Returns the SQL type, to compare with entries in
java.sql.Types.

• isReadOnly. Indicates whether the entry is a read-only value.
• isSearchable. Indicates whether the column can be used in a

WHERE clause.
• isNullable. Indicates whether storing NULL is legal for the column.

ResultSetMetaData does not include information about the number of rows;
however, if your driver complies with JDBC 2.0, you can call last on the ResultSet
to move the cursor to the last row and then call getRow to retrieve the current row
number. In JDBC 1.0, the only way to determine the number of rows is to repeatedly
call next on the ResultSet until it returns false.

Core Note

ResultSet and ResultSetMetaData do not directly provide a
method to return the number of rows returned from a query. However, in
JDBC 2.0, you can position the cursor at the last row in the ResultSet
by calling last, and then obtain the current row number by calling
getRow.

17.2 Basic JDBC Examples 509

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Close the Connection
To close the connection explicitly, you would do:

connection.close();

Closing the connection also closes the corresponding Statement and ResultSet
objects.

You should postpone closing the connection if you expect to perform additional
database operations, since the overhead of opening a connection is usually large. In
fact, reusing existing connections is such an important optimization that the JDBC
2.0 API defines a ConnectionPoolDataSource interface for obtaining pooled
connections. Pooled connections are discussed in Volume 2 of this book.

17.2 Basic JDBC Examples

In this section, we present two simple JDBC examples that connect to the Microsoft
Access Northwind database (shown in Figure 17–2) and perform a simple query. The
Northwind database is included in the samples section of Microsoft Office. To con-
figure the Northwind database for access from JDBC, see Section 18.1.

Figure 17–2 Microsoft Access Northwind sample database showing the first four columns
of the Employees table. See Section 18.1 for information on using this database.

Chapter 17 ■ Accessing Databases with JDBC510

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Northwind is a good database for testing and experimentation since it is already
installed on many systems and since the JDBC-ODBC bridge for connecting to
Microsoft Access is already bundled in the JDK. However, Microsoft Access is not
intended for serious online databases. For production purposes, a higher-perfor-
mance option like MySQL (see Section 18.2), Oracle9i (see Section 18.3), Microsoft
SQL Server, Sybase, or DB2 is far better.

The first example, Listing 17.1, presents a standalone class called North-
windTest that follows the seven steps outlined in the previous section to display the
results of querying the Employee table.

The results for the NorthwindTest are shown in Listing 17.2. Since North-
windTest is in the coreservlets package, it resides in a subdirectory called core-
servlets. Before compiling the file, set the CLASSPATH to include the directory
containing the coreservlets directory. See Section 2.7 (Set Up Your Development
Environment) for details. With this setup, simply compile the program by running
javac NorthwindTest.java from within the coreservlets subdirectory (or by
selecting “build” or “compile” in your IDE). To run NorthwindTest, you need to
refer to the full package name with java coreservlets.NorthwindTest.

The second example, Listing 17.3 (NorthwindServlet), connects to the data-
base from a servlet and presents the query results as an HTML table. Both Listing
17.1 and Listing 17.3 use the JDBC-ODBC bridge driver, sun.jdbc.odbc.Jdbc-
OdbcDriver, included with the JDK.

Listing 17.1 NorthwindTest.java

package coreservlets;

import java.sql.*;

/** A JDBC example that connects to the MicroSoft Access sample
 * Northwind database, issues a simple SQL query to the
 * employee table, and prints the results.
 */

public class NorthwindTest {
 public static void main(String[] args) {
 String driver = "sun.jdbc.odbc.JdbcOdbcDriver";
 String url = "jdbc:odbc:Northwind";
 String username = ""; // No username/password required
 String password = ""; // for desktop access to MS Access.
 showEmployeeTable(driver, url, username, password);
 }

 /** Query the employee table and print the first and
 * last names.
 */

17.2 Basic JDBC Examples 511

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public static void showEmployeeTable(String driver,
 String url,
 String username,
 String password) {
 try {
 // Load database driver if it's not already loaded.
 Class.forName(driver);
 // Establish network connection to database.
 Connection connection =
 DriverManager.getConnection(url, username, password);
 System.out.println("Employees\n" + "==========");
 // Create a statement for executing queries.
 Statement statement = connection.createStatement();
 String query =
 "SELECT firstname, lastname FROM employees";
 // Send query to database and store results.
 ResultSet resultSet = statement.executeQuery(query);
 // Print results.
 while(resultSet.next()) {
 System.out.print(resultSet.getString("firstname") + " ");
 System.out.println(resultSet.getString("lastname"));
 }
 connection.close();
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 } catch(SQLException sqle) {
 System.err.println("Error with connection: " + sqle);
 }
 }
}

Listing 17.2 NorthwindTest Result

Prompt> java coreservlets.NorthwindTest

Employees
==========
Nancy Davolio
Andrew Fuller
Janet Leverling
Margaret Peacock
Steven Buchanan
Michael Suyama
Robert King
Laura Callahan
Anne Dodsworth

Listing 17.1 NorthwindTest.java (continued)

Chapter 17 ■ Accessing Databases with JDBC512

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

For the second example, NorthwindServlet (Listing 17.3), the information for
performing the query is taken from an HTML form, NorthwindForm.html, shown in
Listing 17.4. Here, you can enter the query into the form text area before submitting
the form to the servlet. The servlet reads the driver, URL, username, password, and
the query from the request parameters and generates an HTML table based on the
query results. The servlet also demonstrates the use of DatabaseMetaData to look
up the product name and product version of the database. The HTML form is shown
in Figure 17–3; Figure 17–4 shows the result of submitting the form. For this exam-
ple, the HTML form and servlet are located in the Web application named jdbc.
For more information on creating and using Web applications, see Section 2.11.

Listing 17.3 NorthwindServlet.java

package coreservlets;

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** A simple servlet that connects to a database and
 * presents the results from the query in an HTML
 * table. The driver, URL, username, password,
 * and query are taken from form input parameters.
 */

public class NorthwindServlet extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\"\n";
 String title = "Northwind Results";
 out.print(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\"><CENTER>\n" +
 "<H1>Database Results</H1>\n");
 String driver = request.getParameter("driver");
 String url = request.getParameter("url");
 String username = request.getParameter("username");

17.2 Basic JDBC Examples 513

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 String password = request.getParameter("password");
 String query = request.getParameter("query");
 showTable(driver, url, username, password, query, out);
 out.println("</CENTER></BODY></HTML>");
 }

 public void showTable(String driver, String url,
 String username, String password,
 String query, PrintWriter out) {
 try {
 // Load database driver if it's not already loaded.
 Class.forName(driver);
 // Establish network connection to database.
 Connection connection =
 DriverManager.getConnection(url, username, password);
 // Look up info about the database as a whole.
 DatabaseMetaData dbMetaData = connection.getMetaData();
 out.println("");
 String productName =
 dbMetaData.getDatabaseProductName();
 String productVersion =
 dbMetaData.getDatabaseProductVersion();
 out.println(" Database: " + productName +
 " Version: " + productVersion +
 "");
 Statement statement = connection.createStatement();
 // Send query to database and store results.
 ResultSet resultSet = statement.executeQuery(query);
 // Print results.
 out.println("<TABLE BORDER=1>");
 ResultSetMetaData resultSetMetaData =
 resultSet.getMetaData();
 int columnCount = resultSetMetaData.getColumnCount();
 out.println("<TR>");
 // Column index starts at 1 (a la SQL), not 0 (a la Java).
 for(int i=1; i <= columnCount; i++) {
 out.print("<TH>" + resultSetMetaData.getColumnName(i));
 }
 out.println();
 // Step through each row in the result set.
 while(resultSet.next()) {
 out.println("<TR>");

Listing 17.3 NorthwindServlet.java (continued)

Chapter 17 ■ Accessing Databases with JDBC514

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 // Step across the row, retrieving the data in each
 // column cell as a String.
 for(int i=1; i <= columnCount; i++) {
 out.print("<TD>" + resultSet.getString(i));
 }
 out.println();
 }
 out.println("</TABLE>");
 connection.close();
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 } catch(Exception ex) {
 System.err.println("Error with input: " + ex);
 }
 }
}

Listing 17.4 NorthwindForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Simple Query Form</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H2>Query Input:</H2>
<FORM ACTION="/jdbc/servlet/coreservlets.NorthwindServlet"
 METHOD="POST">
<TABLE>
 <TR><TD>Driver:
 <TD><INPUT TYPE="TEXT" NAME="driver"
 VALUE="sun.jdbc.odbc.JdbcOdbcDriver" SIZE="35">
 <TR><TD>URL:
 <TD><INPUT TYPE="TEXT" NAME="url"
 VALUE="jdbc:odbc:Northwind" SIZE="35">
 <TR><TD>Username:
 <TD><INPUT TYPE="TEXT" NAME="username">

Listing 17.3 NorthwindServlet.java (continued)

17.2 Basic JDBC Examples 515

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 <TR><TD>Password:
 <TD><INPUT TYPE="PASSWORD" NAME="password">
 <TR><TD VALIGN="TOP">Query:
 <TD><TEXTAREA ROWS="5" COLS="35" NAME="query"></TEXTAREA>
 <TR><TD COLSPAN="2" ALIGN="CENTER"><INPUT TYPE="SUBMIT">
</TABLE>
</FORM>
</BODY></HTML>

Listing 17.4 NorthwindForm.html (continued)

Figure 17–3 NorthwindForm.html: front end to servlet that queries the Northwind
database.

Chapter 17 ■ Accessing Databases with JDBC516

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

In the preceding example, the HTML table was generated from the query results
within a servlet. In Volume 2 of this book, we present various custom tags to generate
the HTML table from the query results in the JSP page itself. Furthermore, if your
development model favors JSP, the JSP Standard Tag Library (JSTL) provides an
sql:query action to query a database and store the query result in a scoped vari-
able for processing on the JSP page. JSTL is also covered in Volume 2 of this book.

Figure 17–4 Result of querying the Northwind database.

17.3 Simplifying Database Access with JDBC Utilities 517

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

17.3 Simplifying Database Access
with JDBC Utilities

In this section, we present a couple of helper classes that are used throughout this
chapter to simplify coding. These classes provide basic functionality for loading driv-
ers and making database connections.

For example, the DriverUtilities class (Listing 17.5) simplifies the building
of a URL to connect to a database. To build a URL for MySQL, which is in the form

String url = "jdbc:mysql://host:3306/dbname";

you first need to load the vendor data by calling loadDrivers. Then, call makeURL
to build the URL, as in

DriverUtilities.loadDrivers();
String url =
 DriverUtilities.makeURL(host, dbname, DriverUtilities.MYSQL);

where the host, database name, and vendor are dynamically specified as arguments.
In this manner, the database URL does not need to be hard-coded in the examples
throughout this chapter. More importantly, you can simply add information about
your database to the loadDrivers method in DriverUtilities (and a constant
to refer to your driver, if desired). Afterwards, the examples throughout this chapter
should work for your environment.

As another example, the ConnectionInfoBean class (Listing 17.9) provides a
utility method, getConnection, for obtaining a Connection to a database. Thus,
to obtain a connection to the database, replace

Connection connection = null;
try {
 Class.forName(driver);
 connection = DriverManager.getConnection(url, username,
 password);
} catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
} catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
}

with

Connection connection =
 ConnectionInfoBean.getConnection(driver, url,
 username, password);

Chapter 17 ■ Accessing Databases with JDBC518

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

If an SQLException occurs while the connection is being acquired, null is
returned.

We define four utility classes in this section.

1. DriverUtilities
This class, shown in Listing 17.5, loads explicitly coded driver informa-
tion about various database vendors. It then provides methods for
obtaining the driver class for a vendor (getDriver) and creating a
URL (makeURL), given the host, database name, and vendor. We pro-
vide driver information for Microsoft Access, MySQL, and Oracle
databases, but you can easily update the class for your environment.

2. DriverUtilities2
This class, shown in Listing 17.6, extends DriverUtilities (List-
ing 17.5) and overrides loadDrivers to obtain the driver informa-
tion from an XML file. A representative XML file is shown in
drivers.xml, Listing 17.7.

3. DriverInfoBean
The DriverInfoBean class, shown in Listing 17.8, encapsulates
driver information for a specific vendor (used by DriverUtilities,
Listing 17.5). The bean contains a keyword (vendor name), a brief
description of the driver, the driver classname, and a URL for con-
necting to a database.

4. ConnectionInfoBean
This class, shown in Listing 17.9, encapsulates information for connec-
tion to a particular database. The bean encapsulates a name for the
connection, a brief description of the connection, the driver class, the
URL to connect to the database, the username, and the password. In
addition, the bean provides a getConnection method to directly
obtain a Connection to a database.

Listing 17.5 DriverUtilities.java

package coreservlets;

import java.io.*;
import java.sql.*;
import java.util.*;
import coreservlets.beans.*;

17.3 Simplifying Database Access with JDBC Utilities 519

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

/** Some simple utilities for building JDBC connections to
 * databases from different vendors. The drivers loaded are
 * hard-coded and specific to our local setup. You can
 * either modify the loadDrivers method and recompile or
 * use <CODE>DriverUtilities2</CODE> to load the driver
 * information for each vendor from an XML file.
 */

public class DriverUtilities {
 public static final String MSACCESS = "MSACCESS";
 public static final String MYSQL = "MYSQL";
 public static final String ORACLE = "ORACLE";

 // Add constant to refer to your database here ...

 protected static Map driverMap = new HashMap();

 /** Load vendor driver information. Here we have hard-coded
 * driver information specific to our local setup.
 * Modify the values according to your setup.
 * Alternatively, you can use <CODE>DriverUtilities2</CODE>
 * to load driver information from an XML file.
 * <P>
 * Each vendor is represented by a
 * <CODE>DriverInfoBean</CODE> that defines a vendor
 * name (keyword), description, driver class, and URL. The
 * bean is stored in a driver map; the vendor name is
 * used as the keyword to retrieve the information.
 * <P>
 * The url variable should contain the placeholders
 * [$host] and [$dbName] to substitute for the <I>host</I>
 * and <I>database name</I> in <CODE>makeURL</CODE>.
 */

 public static void loadDrivers() {
 String vendor, description, driverClass, url;
 DriverInfoBean info = null;

 // MSAccess
 vendor = MSACCESS;
 description = "MS Access 4.0";
 driverClass = "sun.jdbc.odbc.JdbcOdbcDriver";
 url = "jdbc:odbc:[$dbName]";
 info = new DriverInfoBean(vendor, description,
 driverClass, url);
 addDriverInfoBean(info);

Listing 17.5 DriverUtilities.java (continued)

Chapter 17 ■ Accessing Databases with JDBC520

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 // MySQL
 vendor = MYSQL;
 description = "MySQL Connector/J 3.0";
 driverClass = "com.mysql.jdbc.Driver";
 url = "jdbc:mysql://[$host]:3306/[$dbName]";
 info = new DriverInfoBean(vendor, description,
 driverClass, url);
 addDriverInfoBean(info);

 // Oracle
 vendor = ORACLE;
 description = "Oracle9i Database";
 driverClass = "oracle.jdbc.driver.OracleDriver";
 url = "jdbc:oracle:thin:@[$host]:1521:[$dbName]";
 info = new DriverInfoBean(vendor, description,
 driverClass, url);
 addDriverInfoBean(info);

// Add info on your database here...
 }

 /** Add information (<CODE>DriverInfoBean</CODE>) about new
 * vendor to the map of available drivers.
 */

 public static void addDriverInfoBean(DriverInfoBean info) {
 driverMap.put(info.getVendor().toUpperCase(), info);
 }

 /** Determine if vendor is represented in the loaded
 * driver information.
 */

 public static boolean isValidVendor(String vendor) {
 DriverInfoBean info =
 (DriverInfoBean)driverMap.get(vendor.toUpperCase());
 return(info != null);
 }

 /** Build a URL in the format needed by the
 * database drivers. In building of the final URL, the
 * keywords [$host] and [$dbName] in the URL
 * (looked up from the vendor's <CODE>DriverInfoBean</CODE>)
 * are appropriately substituted by the host and dbName
 * method arguments.
 */

Listing 17.5 DriverUtilities.java (continued)

17.3 Simplifying Database Access with JDBC Utilities 521

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

In DriverUtilities, driver information for each vendor (Microsoft Access,
MySQL, and Oracle9i) is explicitly coded into the program. If you are using a differ-
ent database, you will need to modify DriverUtilities to include your driver
information and then recompile the code. Since this approach may not be conve-
nient, we include a second program, DriverUtilities2 in Listing 17.6, that reads

 public static String makeURL(String host, String dbName,
 String vendor) {
 DriverInfoBean info =
 (DriverInfoBean)driverMap.get(vendor.toUpperCase());
 if (info == null) {
 return(null);
 }
 StringBuffer url = new StringBuffer(info.getURL());
 DriverUtilities.replace(url, "[$host]", host);
 DriverUtilities.replace(url, "[$dbName]", dbName);
 return(url.toString());
 }

 /** Get the fully qualified name of a driver. */

 public static String getDriver(String vendor) {
 DriverInfoBean info =
 (DriverInfoBean)driverMap.get(vendor.toUpperCase());
 if (info == null) {
 return(null);
 } else {
 return(info.getDriverClass());
 }
 }

 /** Perform a string substitution, where the first "match"
 * is replaced by the new "value".
 */

 private static void replace(StringBuffer buffer,
 String match, String value) {
 int index = buffer.toString().indexOf(match);
 if (index > 0) {
 buffer.replace(index, index + match.length(), value);
 }
 }
}

Listing 17.5 DriverUtilities.java (continued)

Chapter 17 ■ Accessing Databases with JDBC522

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

the driver information from an XML file. Then, to add a new database vendor to your
program, you simply edit the XML file. An example XML file, drivers.xml, is given in
Listing 17.7

When using DriverUtilites2 in a command-line application, place the driver
file, drivers.xml, in the working directory from which you started the application.
Afterwards, call loadDrivers with the complete filename (including path).

For a Web application, we recommend placing drivers.xml in the WEB-INF direc-
tory. You may want to specify the filename as a context initialization parameter in
web.xml (for details, see the chapter on web.xml in Volume 2 of this book). Also,
remember that from the servlet context you can use getRealPath to determine the
physical path to a file relative to the Web application directory, as shown in the fol-
lowing code fragment.

ServletContext context = getServletContext();

String path = context.getRealPath("/WEB-INF/drivers.xml");

JDK 1.4 includes all the necessary classes to parse the XML document, drivers.xml.
If you are using JDK 1.3 or earlier, you will need to download and install a SAX
and DOM parser. Xerces-J by Apache is an excellent parser and is available at
http://xml.apache.org/xerces2-j/. Most Web application servers are already bundled
with an XML parser, so you may not need to download Xerces-J. Check the vendor’s
documentation to determine where the parser files are located and include them in
your CLASSPATH for compiling your application. For example, Tomcat 4.x includes
the parser JAR files (xercesImpl.jar and xmlParserAPI.jar) in the install_dir/common/
endorsed directory.

Note that if you are using servlets 2.4 (JSP 2.0) in a fully J2EE-1.4-compatible
server, you are guaranteed to have JDK 1.4 or later.

Listing 17.6 DriverUtilities2.java

package coreservlets;

import java.io.*;
import java.util.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;
import coreservlets.beans.*;

/** Extends <CODE>DriverUtilities</CODE> to support the
 * loading of driver information for different database vendors
 * from an XML file (default is drivers.xml). Both DOM and
 * JAXP are used to read the XML file. The format for the
 * XML file is:

17.3 Simplifying Database Access with JDBC Utilities 523

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 * <P>
 * <PRE>
 * <drivers>
 * <driver>
 * <vendor>ORACLE</vendor>
 * <description>Oracle</description>
 * <driver-class>
 * oracle.jdbc.driver.OracleDriver
 * </driver-class>
 * <url>
 * jdbc:oracle:thin:@[$host]:1521:[$dbName]
 * </url>
 * </driver>
 * ...
 * <drivers>
 * </PRE>
 * <P>
 * The url element should contain the placeholders
 * [$host] and [$dbName] to substitute for the host and
 * database name in makeURL.
 */

public class DriverUtilities2 extends DriverUtilities {
 public static final String DEFAULT_FILE = "drivers.xml";

 /** Load driver information from default XML file,
 * drivers.xml.
 */

 public static void loadDrivers() {
 DriverUtilities2.loadDrivers(DEFAULT_FILE);
 }

 /** Load driver information from specified XML file. Each
 * vendor is represented by a <CODE>DriverInfoBean</CODE>
 * object and stored in the map, with the vendor name as
 * the key. Use this method if you need to load a
 * driver file other than the default, drivers.xml.
 */

 public static void loadDrivers(String filename) {
 File file = new File(filename);
 try {
 InputStream in = new FileInputStream(file);
 DocumentBuilderFactory builderFactory =
 DocumentBuilderFactory.newInstance();

Listing 17.6 DriverUtilities2.java (continued)

Chapter 17 ■ Accessing Databases with JDBC524

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 DocumentBuilder builder =
 builderFactory.newDocumentBuilder();
 Document document = builder.parse(in);
 document.getDocumentElement().normalize();
 Element rootElement = document.getDocumentElement();
 NodeList driverElements =
 rootElement.getElementsByTagName("driver");
 // Build DriverInfoBean for each vendor
 for(int i=0; i<driverElements.getLength(); i++) {
 Node node = driverElements.item(i);
 DriverInfoBean info =
 DriverUtilities2.createDriverInfoBean(node);
 if (info != null) {
 addDriverInfoBean(info);
 }
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("Can't find " + filename);
 } catch(IOException ioe) {
 System.err.println("Problem reading file: " + ioe);
 } catch(ParserConfigurationException pce) {
 System.err.println("Can't create DocumentBuilder");
 } catch(SAXException se) {
 System.err.println("Problem parsing document: " + se);
 }
 }

 /** Build a DriverInfoBean object from an XML DOM node
 * representing a vendor driver in the format:
 * <P>
 * <PRE>
 * <driver>
 * <vendor>ORACLE</vendor>
 * <description>Oracle</description>
 * <driver-class>
 * oracle.jdbc.driver.OracleDriver
 * </driver-class>
 * <url>
 * jdbc:oracle:thin:@[$host]:1521:[$dbName]
 * </url>
 * </driver>
 * </PRE>
 */

Listing 17.6 DriverUtilities2.java (continued)

17.3 Simplifying Database Access with JDBC Utilities 525

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public static DriverInfoBean createDriverInfoBean(Node node) {
 Map map = new HashMap();
 NodeList children = node.getChildNodes();
 for(int i=0; i<children.getLength(); i++) {
 Node child = children.item(i);
 String nodeName = child.getNodeName();
 if (child instanceof Element) {
 Node textNode = child.getChildNodes().item(0);
 if (textNode != null) {
 map.put(nodeName, textNode.getNodeValue());
 }
 }
 }
 return(new DriverInfoBean((String)map.get("vendor"),
 (String)map.get("description"),
 (String)map.get("driver-class"),
 (String)map.get("url")));
 }
}

Listing 17.7 drivers.xml

<?xml version="1.0"?>
<!--
Used by DriverUtilities2. Here you configure information
about your database server in XML. To add a driver, include
a vendor keyword, description, driver-class, and URL.
For general use, the host and database name should not
be included in the URL; a special notation is required
for the host and database name. Use [$host] as a
placeholder for the host server and [$dbName] as a placeholder
for the database name. Specify the actual host and database name
when making a call to makeUrl (DriverUtilities). Then, the
appropriate strings will be substituted for [$host]
and [$dbName] before the URL is returned.
-->
<drivers>
 <driver>
 <vendor>MSACCESS</vendor>
 <description>MS Access</description>
 <driver-class>sun.jdbc.odbc.JdbcOdbcDriver</driver-class>
 <url>jdbc:odbc:[$dbName]</url>
 </driver>

Listing 17.6 DriverUtilities2.java (continued)

Chapter 17 ■ Accessing Databases with JDBC526

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 <driver>
 <vendor>MYSQL</vendor>
 <description>MySQL Connector/J 3.0</description>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <url>jdbc:mysql://[$host]:3306/[$dbName]</url>
 </driver>
 <driver>
 <vendor>ORACLE</vendor>
 <description>Oracle</description>
 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
 <url>jdbc:oracle:thin:@[$host]:1521:[$dbName]</url>
 </driver>
</drivers>

Listing 17.8 DriverInfoBean.java

package coreservlets.beans;

/** Driver information for a vendor. Defines the vendor
 * keyword, description, driver class, and URL construct for
 * connecting to a database.
 */

public class DriverInfoBean {
 private String vendor;
 private String description;
 private String driverClass;
 private String url;

public class DriverInfoBean {
 private String vendor;
 private String description;
 private String driverClass;
 private String url;

 public DriverInfoBean(String vendor,
 String description,
 String driverClass,
 String url) {
 this.vendor = vendor;
 this.description = description;
 this.driverClass = driverClass;
 this.url = url;
 }

Listing 17.7 drivers.xml (continued)

17.3 Simplifying Database Access with JDBC Utilities 527

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public String getVendor() {
 return(vendor);
 }

 public String getDescription() {
 return(description);
 }

 public String getDriverClass() {
 return(driverClass);
 }

 public String getURL() {
 return(url);
 }
}

Listing 17.9 ConnectionInfoBean.java

package coreservlets.beans;

import java.sql.*;

/** Stores information to create a JDBC connection to
 * a database. Information includes:
 *
 * connection name
 * description of the connection
 * driver classname
 * URL to connect to the host
 * username
 * password
 *
 */

public class ConnectionInfoBean {
 private String connectionName;
 private String description;
 private String driver;
 private String url;
 private String username;
 private String password;

Listing 17.8 DriverInfoBean.java (continued)

Chapter 17 ■ Accessing Databases with JDBC528

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public ConnectionInfoBean() { }

 public ConnectionInfoBean(String connectionName,
 String description,
 String driver,
 String url,
 String username,
 String password) {
 setConnectionName(connectionName);
 setDescription(description);
 setDriver(driver);
 setURL(url);
 setUsername(username);
 setPassword(password);
 }

 public void setConnectionName(String connectionName) {
 this.connectionName = connectionName;
 }

 public String getConnectionName() {
 return(connectionName);
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public String getDescription() {
 return(description);
 }

 public void setDriver(String driver) {
 this.driver = driver;
 }

 public String getDriver() {
 return(driver);
 }

 public void setURL(String url) {
 this.url = url;
 }

 public String getURL() {
 return(url);
 }

Listing 17.9 ConnectionInfoBean.java (continued)

17.3 Simplifying Database Access with JDBC Utilities 529

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public void setUsername(String username) {
 this.username = username;
 }

 public String getUsername() {
 return(username);
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getPassword() {
 return(password);
 }

 public Connection getConnection() {
 return(getConnection(driver, url, username, password));

 }

 /** Create a JDBC connection or return null if a
 * problem occurs.
 */

 public static Connection getConnection(String driver,
 String url,
 String username,
 String password) {
 try {
 Class.forName(driver);
 Connection connection =
 DriverManager.getConnection(url, username,
 password);
 return(connection);
 } catch(ClassNotFoundException cnfe) {
 System.err.println("Error loading driver: " + cnfe);
 return(null);
 } catch(SQLException sqle) {
 System.err.println("Error connecting: " + sqle);
 return(null);
 }
 }
}

Listing 17.9 ConnectionInfoBean.java (continued)

Chapter 17 ■ Accessing Databases with JDBC530

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

17.4 Using Prepared Statements

If you are going to execute similar SQL statements multiple times, using parameter-
ized (or “prepared”) statements can be more efficient than executing a raw query
each time. The idea is to create a parameterized statement in a standard form that is
sent to the database for compilation before actually being used. You use a question
mark to indicate the places where a value will be substituted into the statement.
Each time you use the prepared statement, you simply replace the marked parame-
ters, using a setXxx call corresponding to the entry you want to set (using 1-based
indexing) and the type of the parameter (e.g., setInt, setString). You then use
executeQuery (if you want a ResultSet back) or execute/executeUpdate to
modify table data, as with normal statements.

For instance, in Section 18.5, we create a music table summarizing the price and
availability of concerto recordings for various classical composers. Suppose, for an
upcoming sale, you want to change the price of all the recordings in the music table.
You might do something like the following.

Connection connection =

DriverManager.getConnection(url, username, password);
String template =

"UPDATE music SET price = ? WHERE id = ?";

PreparedStatement statement =

connection.prepareStatement(template);

float[] newPrices = getNewPrices();

int[] recordingIDs = getIDs();

for(int i=0; i<recordingIDs.length; i++) {

statement.setFloat(1, newPrices[i]); // Price

statement.setInt(2, recordingIDs[i]); // ID

statement.execute();

}

The performance advantages of prepared statements can vary significantly, depend-
ing on how well the server supports precompiled queries and how efficiently the driver
handles raw queries. For example, Listing 17.10 presents a class that sends 100 differ-
ent queries to a database, using prepared statements, then repeats the same 100 que-
ries, using regular statements. On one hand, with a PC and fast LAN connection (100
Mbps) to an Oracle9i database, prepared statements took only about 62 percent of the
time required by raw queries, averaging 0.61 seconds for the 100 queries as compared
with an average of 0.99 seconds for the regular statements (average of 5 runs). On the
other hand, with MySQL (Connector/J 3.0) the prepared statement times were nearly
identical to the raw queries with a fast LAN connection, with only about an 8 percent
reduction in query time. To get performance numbers for your setup, download Driver-
Utilities.java from http://www.coreservlets.com/, add information about your drivers

17.4 Using Prepared Statements 531

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

to it, then run the PreparedStatements program yourself. To create the music
table, see Section 18.5.

Be cautious though: a prepared statement does not always execute faster than an
ordinary SQL statement. The performance improvement can depend on the particular
SQL command you are executing. For a more detailed analysis of the performance for
prepared statements in Oracle, see http://www.oreilly.com/catalog/jorajdbc/chapter/
ch19.html.

However, performance is not the only advantage of a prepared statement. Secu-
rity is another advantage. We recommend that you always use a prepared statement
or stored procedure (see Section 17.5) to update database values when accepting
input from a user through an HTML form. This approach is strongly recommended
over the approach of building an SQL statement by concatenating strings from the
user input values. Otherwise, a clever attacker could submit form values that look
like portions of SQL statements, and once those were executed, the attacker could
inappropriately access or modify the database. This security risk is often referred to
as an SQL Injection Attack. In addition to removing the risk of a such an attack, a
prepared statement will properly handle embedded quotes in strings and handle
noncharacter data (e.g., sending a serialized object to a database).

Core Approach

To avoid an SQL Injection Attack when accepting data from an HTML
form, use a prepared statement or stored procedure to update the
database.

Listing 17.10 PreparedStatements.java

package coreservlets;

import java.sql.*;
import coreservlets.beans.*;

/** An example to test the timing differences resulting
 * from repeated raw queries vs. repeated calls to
 * prepared statements. These results will vary dramatically
 * among database servers and drivers. With our setup
 * and drivers, Oracle9i prepared statements took only 62% of
 * the time that raw queries required, whereas MySQL
 * prepared statements took nearly the same time as
 * raw queries, with only an 8% improvement.
 */

Chapter 17 ■ Accessing Databases with JDBC532

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public class PreparedStatements {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendor = args[4];
 // Use DriverUtilities2.loadDrivers() to load
 // the drivers from an XML file.
 DriverUtilities.loadDrivers();
 if (!DriverUtilities.isValidVendor(vendor)) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 // Use "print" only to confirm it works properly,
 // not when getting timing results.
 boolean print = false;
 if ((args.length > 5) && (args[5].equals("print"))) {
 print = true;
 }
 Connection connection =
 ConnectionInfoBean.getConnection(driver, url,
 username, password);
 if (connection != null) {
 doPreparedStatements(connection, print);
 doRawQueries(connection, print);
 }
 try {
 connection.close();
 } catch(SQLException sqle) {
 System.err.println("Problem closing connection: " + sqle);
 }
 }

 private static void doPreparedStatements(Connection conn,
 boolean print) {
 try {
 String queryFormat =
 "SELECT id FROM music WHERE price < ?";

Listing 17.10 PreparedStatements.java (continued)

17.4 Using Prepared Statements 533

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 PreparedStatement statement =
 conn.prepareStatement(queryFormat);
 long startTime = System.currentTimeMillis();
 for(int i=0; i<100; i++) {
 statement.setFloat(1, i/4);
 ResultSet results = statement.executeQuery();
 if (print) {
 showResults(results);
 }
 }
 long stopTime = System.currentTimeMillis();
 double elapsedTime = (stopTime - startTime)/1000.0;
 System.out.println("Executing prepared statement " +
 "100 times took " +
 elapsedTime + " seconds.");
 } catch(SQLException sqle) {
 System.err.println("Error executing statement: " + sqle);
 }
 }

 public static void doRawQueries(Connection conn,
 boolean print) {
 try {
 String queryFormat =
 "SELECT id FROM music WHERE price < ";
 Statement statement = conn.createStatement();
 long startTime = System.currentTimeMillis();
 for(int i=0; i<100; i++) {
 ResultSet results =
 statement.executeQuery(queryFormat + i/4);
 if (print) {
 showResults(results);
 }
 }
 long stopTime = System.currentTimeMillis();
 double elapsedTime = (stopTime - startTime)/1000.0;
 System.out.println("Executing raw query " +
 "100 times took " +
 elapsedTime + " seconds.");
 } catch(SQLException sqle) {
 System.err.println("Error executing query: " + sqle);
 }
 }

Listing 17.10 PreparedStatements.java (continued)

Chapter 17 ■ Accessing Databases with JDBC534

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The preceding example illustrates how to create a prepared statement and set
parameters for the statement in a command-line program. For Web development,
you may want to submit prepared statements to the database from a JSP page. If so,
the JSP Standard Tag Library (JSTL—see Volume 2 of this book) provides an
sql:query action to define a prepared statement for submission to the database
and an sql:param action to specify parameter values for the prepared statement.

17.5 Creating Callable Statements

With a CallableStatement, you can execute a stored procedure or function in a
database. For example, in an Oracle database, you can write a procedure or function
in PL/SQL and store it in the database along with the tables. Then, you can create a
connection to the database and execute the stored procedure or function through a
CallableStatement.

A stored procedure has many advantages. For instance, syntax errors are caught at
compile time instead of at runtime; the database procedure may run much faster
than a regular SQL query; and the programmer only needs to know about the input
and output parameters, not the table structure. In addition, coding of the stored pro-
cedure may be simpler in the database language than in the Java programming lan-
guage because access to native database capabilities (sequences, triggers, multiple
cursors) is possible.

One disadvantage of a stored procedure is that you may need to learn a new data-
base-specific language (note, however, that Oracle8i Database and later support
stored procedures written in the Java programming language). A second disadvantage

 private static void showResults(ResultSet results)
 throws SQLException {
 while(results.next()) {
 System.out.print(results.getString(1) + " ");
 }
 System.out.println();
 }

 private static void printUsage() {
 System.out.println("Usage: PreparedStatements host " +
 "dbName username password " +
 "vendor [print].");
 }
}

Listing 17.10 PreparedStatements.java (continued)

17.5 Creating Callable Statements 535

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

is that the business logic of the stored procedure executes on the database server
instead of on the client machine or Web server. The industry trend has been to
move as much business logic as possible from the database and to place the business
logic in JavaBeans components (or, on large systems, Enterprise JavaBeans compo-
nents) executing on the Web server. The main motivation for this approach in a Web
architecture is that the database access and network I/O are often the performance
bottlenecks.

Calling a stored procedure in a database involves the six basic steps outlined
below and then described in detail in the following subsections.

1. Define the call to the database procedure. As with a prepared
statement, you use special syntax to define a call to a stored proce-
dure. The procedure definition uses escape syntax, where the appro-
priate ? defines input and output parameters.

2. Prepare a CallableStatement for the procedure. You obtain a
CallableStatement from a Connection by calling prepareCall.

3. Register the output parameter types. Before executing the proce-
dure, you must declare the type of each output parameter.

4. Provide values for the input parameters. Before executing the
procedure, you must supply the input parameter values.

5. Execute the stored procedure. To execute the database stored pro-
cedure, call execute on the CallableStatement.

6. Access the returned output parameters. Call the corresponding
getXxx method, according to the output type.

Define the Call to the Database Procedure
Creating a CallableStatement is somewhat similar to creating a Prepared-
Statement (see Section 17.4, “Using Prepared Statements”) in that special SQL
escape syntax is used in which the appropriate ? is replaced with a value before the
statement is executed. The definition for a procedure takes four general forms.

• Procedure with no parameters.
{ call procedure_name }

• Procedure with input parameters.
{ call procedure_name(?, ?, ...) }

• Procedure with an output parameter.
{ ? call procedure_name }

• Procedure with input and output parameters.
{ ? = call procedure_name(?, ?, ...) }

In each of the four procedure forms, the procedure_name is the name of the
stored procedure in the database. Also, be aware that a procedure can return more

Chapter 17 ■ Accessing Databases with JDBC536

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

than one output parameter and that the indexed parameter values begin with the
output parameters. Thus, in the last procedure example above, the first input param-
eter is indexed by a value of 2 (not 1).

Core Note

If the procedure returns output parameters, then the index of the input
parameters must account for the number of output parameters.

Prepare a CallableStatement for the Procedure

You obtain a CallableStatement from a Connection with the prepareCall
method, as below.

String procedure = "{ ? = call procedure_name(?, ?) }";

CallableStatement statement =

 connection.prepareCall(procedure);

Register the Output Parameter Types

You must register the JDBC type of each output parameter, using register-
OutParameter, as follows,

statement.registerOutParameter(n, type);

where n corresponds to the ordered output parameter (using 1-based indexing), and
type corresponds to a constant defined in the java.sql.Types class
(Types.FLOAT, Types.DATE, etc.).

Provide Values for the Input Parameters

Before executing the stored procedure, you replace the marked input parameters by
using a setXxx call corresponding to the entry you want to set and the type of
parameter (e.g., setInt, setString). For example,

statement.setString(2, "name");

statement.setFloat(3, 26.0F);

sets the first input parameter (presuming one output parameter) to a String, and
the second input parameter to a float. Remember that if the procedure has output
parameters, the index of the input parameters starts from the first output parameter.

17.5 Creating Callable Statements 537

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Execute the Stored Procedure

To execute the stored procedure, simply call execute on the Callable-
Statement object. For example:

statement.execute();

Access the Output Parameters

If the procedure returns output parameters, then after you call execute, you can
access each corresponding output parameter by calling getXxx, where Xxx corre-
sponds to the type of return parameter (getDouble, getDate, etc.). For example,

int value = statement.getInt(1);

returns the first output parameter as a primitive int.

Example

In Listing 17.11, the CallableStatements class demonstrates the execution of an
Oracle stored procedure (technically, a function, since it returns a value) written for
the music table (see Section 18.5 for setting up the music table). You can create the
discount stored procedure in the database by invoking our Callable-
Statements class and specifying create on the command line. Doing so calls the
createStoredFunction method, which submits the procedure (a long string) to
the database as an SQL update. Alternatively, if you have Oracle SQL*Plus, you can
load the procedure directly from discount.sql, Listing 17.12. See Section 18.5 for
information on running the SQL script in SQL*Plus.

The stored procedure discount modifies the price entry in the music table.
Specifically, the procedure accepts two input parameters, composer_in (the com-
poser to select in the music table) and discount_in (the percent by which to dis-
count the price). If the discount_in is outside the range 0.05 to 0.50, then a value
of -1 is returned; otherwise, the number of rows modified in the table is returned
from the stored procedure.

Listing 17.11 CallableStatements.java

package coreservlets;

import java.sql.*;
import coreservlets.beans.*;

Chapter 17 ■ Accessing Databases with JDBC538

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

/** An example that executes the Oracle stored procedure
 * "discount". Specifically, the price of all compositions
 * by Mozart in the "music" table are discounted by
 * 10 percent.
 * <P>
 * To create the stored procedure, specify a command-line
 * argument of "create".
 */

public class CallableStatements {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendor = args[4];
 // Change to DriverUtilities2.loadDrivers() to force
 // loading of vendor drivers from default XML file.
 DriverUtilities.loadDrivers();
 if (!DriverUtilities.isValidVendor(vendor)) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];

 Connection connection =
 ConnectionInfoBean.getConnection(driver, url,
 username, password);
 if (connection == null) {
 return;
 }

 try {
 if ((args.length > 5) && (args[5].equals("create"))) {
 createStoredFunction(connection);
 }
 doCallableStatement(connection, "Mozart", 0.10F);
 } catch(SQLException sqle) {
 System.err.println("Problem with callable: " + sqle);

Listing 17.11 CallableStatements.java (continued)

17.5 Creating Callable Statements 539

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 } finally {
 try {
 connection.close();
 } catch(SQLException sqle) {
 System.err.println("Error closing connection: " + sqle);
 }
 }
 }

 private static void doCallableStatement(Connection connection,
 String composer,
 float discount)
 throws SQLException {
 CallableStatement statement = null;
 try {
 connection.prepareCall("{ ? = call discount(?, ?) }");
 statement.setString(2, composer);
 statement.setFloat(3, discount);
 statement.registerOutParameter(1, Types.INTEGER);
 statement.execute();
 int rows = statement.getInt(1);
 System.out.println("Rows updated: " + rows);
 } catch(SQLException sqle) {
 System.err.println("Problem with callable: " + sqle);
 } finally {
 if (statement != null) {
 statement.close();
 }
 }
 }

 /** Create the Oracle PL/SQL stored procedure "discount".
 * The procedure (technically, a PL/SQL function, since a
 * value is returned), discounts the price for the specified
 * composer in the "music" table.
 */

 private static void createStoredFunction(
 Connection connection)
 throws SQLException {
 String sql = "CREATE OR REPLACE FUNCTION discount " +
 " (composer_in IN VARCHAR2, " +
 " discount_in IN NUMBER) " +
 "RETURN NUMBER " +
 "IS " +

Listing 17.11 CallableStatements.java (continued)

Chapter 17 ■ Accessing Databases with JDBC540

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 " min_discount CONSTANT NUMBER:= 0.05; " +
 " max_discount CONSTANT NUMBER:= 0.50; " +
 "BEGIN " +
 " IF discount_in BETWEEN min_discount " +
 " AND max_discount THEN " +
 " UPDATE music " +
 " SET price = price * (1.0 - discount_in) "+
 " WHERE composer = composer_in; " +
 " RETURN(SQL%ROWCOUNT); " +
 " ELSE " +
 " RETURN(-1); " +
 " END IF; " +
 "END discount;";
 Statement statement = null;
 try {
 statement = connection.createStatement();
 statement.executeUpdate(sql);
 } catch(SQLException sqle) {
 System.err.println("Problem creating function: " + sqle);
 } finally {
 if (statement != null) {
 statement.close();
 }
 }
 }

 private static void printUsage() {
 System.out.println("Usage: CallableStatement host " +
 "dbName username password " +
 "vendor [create].");
 }
}

Listing 17.12 discount.sql (PL/SQL function for Oracle)

/* Discounts the price of all music by the specified
 * composer, composer_in. The music is discounted by the
 * percentage specified by discount_in.
 *
 * Returns the number of rows modified, or -1 if the discount
 * value is invalid.
 */

Listing 17.11 CallableStatements.java (continued)

17.6 Using Database Transactions 541

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

17.6 Using Database Transactions

When a database is updated, by default the changes are permanently written (or
committed) to the database. However, this default behavior can be programmati-
cally turned off. If autocommitting is turned off and a problem occurs with the
updates, then each change to the database can be backed out (or rolled back to the
original values). If the updates execute successfully, then the changes can later be
permanently committed to the database. This approach is known as transaction
management.

Transaction management helps to ensure the integrity of your database tables. For
example, suppose you are transferring funds from a savings account to a checking
account. If you first withdraw from the savings account and then deposit into the
checking account, what happens if there is an error after the withdrawal but before
the deposit? The customer’s accounts will have too little money, and the banking reg-
ulators will levy stiff fines. On the other hand, what if you first deposit into the check-
ing account and then withdraw from the savings account, and there is an error after
the deposit but before the withdrawal? The customer’s accounts will have too much
money, and the bank’s board of directors will fire the entire IT staff. The point is, no
matter how you order the operations, the accounts will be left in an inconsistent state
if one operation is committed and the other is not. You need to guarantee that either
both operations occur or that neither does. That’s what transaction management is all
about.

CREATE OR REPLACE FUNCTION discount
 (composer_in IN VARCHAR2, discount_in IN NUMBER)
RETURN NUMBER
IS
 min_discount CONSTANT NUMBER:= 0.05;
 max_discount CONSTANT NUMBER:= 0.50;
BEGIN
 IF discount_in BETWEEN min_discount AND max_discount THEN
 UPDATE music
 SET price = price * (1.0 - discount_in)
 WHERE composer = composer_in;
 RETURN(SQL%ROWCOUNT);
 ELSE
 RETURN(-1);
 END IF;
END discount;

Listing 17.12 discount.sql (PL/SQL function for Oracle) (continued)

Chapter 17 ■ Accessing Databases with JDBC542

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The default for a database connection is autocommit; that is, each executed state-
ment is automatically committed to the database. Thus, for transaction management
you first need to turn off autocommit for the connection by calling setAuto-
Commit(false).

Typically, you use a try/catch/finally block to properly handle the transac-
tion management. First, you should record the autocommit status. Then, in the try
block, you should call setAutoCommit(false) and execute a set of queries or
updates. If a failure occurs, you call rollback in the catch block; if the transac-
tions are successful, you call commit at the end of the try block. Either way, you
reset the autocommit status in the finally block.

Following is a template for this transaction management approach.

Connection connection =

DriverManager.getConnection(url, username, password);

boolean autoCommit = connection.getAutoCommit();

Statement statement;

try {

connection.setAutoCommit(false);

statement = connection.createStatement();

statement.execute(...);

statement.execute(...);

...

connection.commit();

} catch(SQLException sqle) {

connection.rollback();

} finally {

statement.close();

connection.setAutoCommit(autoCommit);

}

Here, the statement for obtaining a connection from the DriverManager is out-
side the try/catch block. That way, rollback is not called unless a connection is
successfully obtained. However, the getConnection method can still throw an
SQLException and must be thrown by the enclosing method or be caught in a sep-
arate try/catch block.

In Listing 17.13, we add new recordings to the music table as a transaction block
(see Section 18.5 to create the music table). To generalize the task, we create a
TransactionBean, Listing 17.14, in which we specify the connection to the data-
base and submit a block of SQL statements as an array of strings. The bean then
loops through the array of SQL statements, executes each one of them, and if an
SQLException is thrown, performs a rollback and rethrows the exception.

17.6 Using Database Transactions 543

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 17.13 Transactions.java

package coreservlets;

import java.sql.*;
import coreservlets.beans.*;

/** An example to demonstrate submission of a block of
 * SQL statements as a single transaction. Specifically,
 * four new records are inserted into the music table.
 * Performed as a transaction block so that if a problem
 * occurs, a rollback is performed and no changes are
 * committed to the database.
 */

public class Transactions {
 public static void main(String[] args) {
 if (args.length < 5) {
 printUsage();
 return;
 }
 String vendor = args[4];
 // Change to DriverUtilities2.loadDrivers() to load
 // vendor drivers from an XML file instead of loading
 // hard-coded vendor drivers in DriverUtilities.
 DriverUtilities.loadDrivers();
 if (!DriverUtilities.isValidVendor(vendor)) {
 printUsage();
 return;
 }
 String driver = DriverUtilities.getDriver(vendor);
 String host = args[0];
 String dbName = args[1];
 String url =
 DriverUtilities.makeURL(host, dbName, vendor);
 String username = args[2];
 String password = args[3];
 doTransactions(driver, url, username, password);
 }

 private static void doTransactions(String driver,
 String url,
 String username,
 String password) {

Chapter 17 ■ Accessing Databases with JDBC544

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 String[] transaction =
 { "INSERT INTO music VALUES " +
 " (9, 'Chopin', 'No. 2 in F minor', 100, 17.99)",
 "INSERT INTO music VALUES " +
 " (10, 'Tchaikovsky', 'No. 1 in Bb minor', 100, 24.99)",
 "INSERT INTO music VALUES " +
 " (11, 'Ravel', 'No. 2 in D major', 100, 14.99)",
 "INSERT INTO music VALUES " +
 " (12, 'Schumann', 'No. 1 in A minor', 100, 14.99)"};
 TransactionBean bean = new TransactionBean();
 try {
 bean.setConnection(driver, url, username, password);
 bean.execute(transaction);
 } catch (SQLException sqle) {
 System.err.println("Transaction failure: " + sqle);
 } finally {
 bean.close();
 }
 }

 private static void printUsage() {
 System.out.println("Usage: Transactions host " +
 "dbName username password " +
 "vendor.");
 }
}

Listing 17.14 TransactionBean.java

package coreservlets.beans;

import java.io.*;
import java.sql.*;
import java.util.*;
import coreservlets.*;

/** Bean for performing JDBC transactions. After specifying
 * the connection, submit a block of SQL statements as a
 * single transaction by calling execute. If an SQLException
 * occurs, any prior statements are automatically rolled back.
 */

Listing 17.13 Transactions.java (continued)

17.6 Using Database Transactions 545

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public class TransactionBean {
 private Connection connection;

 public void setConnection(Connection connection) {
 this.connection = connection;
 }

 public void setConnection(String driver, String url,
 String username, String password) {
 setConnection(ConnectionInfoBean.getConnection(
 driver, url, username, password));
 }

 public Connection getConnection() {
 return(connection);
 }

 public void execute(List list) throws SQLException {
execute((String[])list.toArray(new String[list.size()]));

 }

 public void execute(String transaction)
 throws SQLException {
 execute(new String[] { transaction });
 }

 /** Execute a block of SQL statements as a single
 * transaction. If an SQLException occurs, a rollback
 * is attempted and the exception is thrown.
 */

 public void execute(String[] transaction)
 throws SQLException {
 if (connection == null) {
 throw new SQLException("No connection available.");
 }
 boolean autoCommit = connection.getAutoCommit();
 try {
 connection.setAutoCommit(false);
 Statement statement = connection.createStatement();
 for(int i=0; i<transaction.length; i++) {
 statement.execute(transaction[i]);
 }
 statement.close();
 } catch(SQLException sqle) {
 connection.rollback();
 throw sqle;

Listing 17.14 TransactionBean.java (continued)

Chapter 17 ■ Accessing Databases with JDBC546

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The preceding example demonstrates the use of a bean for submitting transac-
tions to a database. This approach is excellent for a servlet; however, in a JSP page,
you may want to use the sql:transaction action available in the JSP Standard
Tag Library (JSTL). See Volume 2 of this book for details on JSTL.

17.7 Mapping Data to Objects by
Using ORM Frameworks

Because of the need to easily move data back and forth from a database to a Java
object, numerous vendors have developed frameworks for mapping objects to rela-
tional databases. This is a powerful capability since object-oriented programming and
relational databases have always had an impedance mismatch: objects understand
both state and behavior and can be traversed through relationships with other
objects, whereas relational databases store information in tables but are typically
related through primary keys.

Table 17.1 summarizes a few popular object-to-relational mapping (ORM) frame-
works. Numerous other ORM frameworks are available. For a comparison of
Java-based ORM products, see http://c2.com/cgi-bin/wiki?ObjectRelationalTool-

 } finally {
 connection.commit();

 connection.setAutoCommit(autoCommit);
 }
}

 public void close() {
 if (connection != null) {
 try {
 connection.close();
 } catch(SQLException sqle) {
 System.err.println(
 "Failed to close connection: " + sqle);
 } finally {
 connection = null;
 }
 }
 }
}

Listing 17.14 TransactionBean.java (continued)

17.7 Mapping Data to Objects by Using ORM Frameworks 547

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Comparison. Another excellent source for ORM frameworks and tutorials is located
at http://www.javaskyline.com/database.html. (Remember that the book’s source
code archive at http://www.coreservlets.com/ contains up-to-date links to all URLs
mentioned in the book.)

Many, but not all, of these frameworks support the API for Java Data Objects
(JDO). The JDO API provides a complete object-oriented approach to manage
objects that are mapped to a persistent store (database). Detailed coverage of ORM
frameworks and JDO is beyond the scope of this book. However, we provide a brief
summary to show the power that JDO provides. For more information on JDO, see
the online material at http://java.sun.com/products/jdo/ and http://jdocentral.com/.
In addition, you can refer to Core Java Data Objects by Sameer Tyagi et al.

In JDO frameworks, the developer must provide XML-based metadata for each
Java class that maps to the relational database. The metadata defines the persistent
fields in each class and the potential role of each field relative to the database (e.g.,
the primary key). Once the metadata and source code for each Java class are
defined, the developer must run a framework utility to generate the necessary JDO
code to support persistence of the object’s fields in the persistent store (database).

JDO framework utilities take one of two approaches to modify a Java class in sup-
port of the persistent store: the first approach is to modify the source code before
compiling, the second approach is to modify the bytecode (.class file) after compiling
the source code. The second approach is more common because it simplifies the
maintenance of the source code—the generated database code is never seen by the
developer.

In the case of a JDO implementation for an SQL database, the framework utility
generates all the necessary code required by the JDO persistence manager to
INSERT new rows in the database, as well as to perform UPDATE and DELETE opera-
tions for persisting modifications to the data. The developer is not required to write

Table 17.1 Object-to-Relational Mapping Frameworks

Framework URL

Castor http://castor.exolab.org/

CocoBase http://www.cocobase.com/

FrontierSuite http://www.objectfrontier.com/

Kodo JDO http://www.solarmetric.com/

ObJectRelationalBridge http://db.apache.org/ojb/

TopLink http://otn.oracle.com/products/ias/toplink/

Chapter 17 ■ Accessing Databases with JDBC548

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

any SQL or JDBC code; the framework utility generates all the necessary code,
and the persistence manager generates all the necessary communication with the
database. Once the framework is set up, the developer simply needs to create objects
and understand the JDO API.

Listing 17.15 shows Music.jdo, an example of how metadata for the Music class
(Listing 17.16) is defined for SolarMetric’s Kodo JDO implementation. The XML file
Music.jdo maps the Music class to a table in the database by using an extension
element with a key attribute of table and a value attribute of music. It is not
necessary that the database already have a table named music; in fact, the Kodo
framework creates all tables necessary in the database for the persistent storage, pos-
sibly using modified table names. The name attribute simply defines a mapping for
the framework.

The .jdo file further designates a field element for each field in the class that
must be persisted in the database. Each field element defines an extension ele-
ment to map a field in the class to a column in the database table, where the value
attribute clarifies the name of the database column. The extension elements are
vendor specific, so be sure to consult the documentation of your JDO vendor for the
proper values for the key attribute.

The PersistenceManager class provides access to the persistent store (data-
base). For example, Listing 17.17 shows how to insert fields associated with new
objects into the persistent store with the makePersistentAll method. Changes to
the persistent store are managed as a transaction and must be placed between calls to
the begin and commit methods of the Transaction class. Thus, to insert the fields
associated with a Music object into the database, you simply call the appropriate set-
Xxx methods on the Music object and then invoke the makePersistentAll
method within a transaction. The JDO persistence manager automatically creates
and executes the SQL statements to commit the data to the database. In a similar
manner, the deletion of fields associated with a Music object is handled through the
makeDeletePersistent method of PersistenceManager. For more compli-
cated interaction with the persistent store, JDO provides a Query class to execute
queries and return the results as a Collection of objects.

Lastly, the location of the database, the username, the password, and other sys-
tem-specific information is read from system properties (specified by Listing 17.18 in
this example).

17.7 Mapping Data to Objects by Using ORM Frameworks 549

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 17.15 Music.jdo

<?xml version="1.0"?>
<!DOCTYPE jdo PUBLIC
"-//Sun Microsystems, Inc.//DTD Java Data Objects Metadata 1.0//EN"
"http://java.sun.com/dtd/jdo_1_0.dtd">
<jdo>
<package name="coreservlets.jdo">
<class name="Music" >
<extension vendor-name="kodo"

key="table" value="music"/>
<extension vendor-name="kodo"

key="lock-column" value="none"/>
<extension vendor-name="kodo"

key="class-column" value="none"/>
<field name="id" primary-key="true">
<extension vendor-name="kodo"

key="data-column" value="id"/>
</field>
<field name="composer">
<extension vendor-name="kodo"

key="data-column" value="composer"/>
</field>
<field name="concerto">
<extension vendor-name="kodo"

key="data-column" value="concerto"/>
</field>
<field name="available">
<extension vendor-name="kodo"

key="data-column" value="available"/>
</field>
<field name="price">
<extension vendor-name="kodo"

key="data-column" value="price"/>
</field>

</class>
</package>

</jdo>

Chapter 17 ■ Accessing Databases with JDBC550

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 17.16 Music.java

package coreservlets.jdo;

/** Music object corresponding to a record in a database.
 * A Music object/record provides information about
 * a concerto that is available for purchase and
 * defines fields for the ID, composer, concerto,
 * items available, and sales price.
 */

public class Music {
 private int id;
 private String composer;
 private String concerto;
 private int available;
 private float price;

 public Music() { }

 public Music(int id, String composer, String concerto,
 int available, float price) {
 setId(id);
 setComposer(composer);
 setConcerto(concerto);
 setAvailable(available);
 setPrice(price);
 }

 public void setId(int id) {
 this.id = id;
 }

 public int getId() {
 return(id);
 }

 public void setComposer(String composer) {
 this.composer = composer;
 }

 public String getComposer() {
 return(concerto);
 }

 public void setConcerto(String concerto) {
 this.concerto = concerto;
 }

17.7 Mapping Data to Objects by Using ORM Frameworks 551

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public String getConcerto() {
 return(composer);
 }

 public void setAvailable(int available) {
 this.available = available;
 }

 public int getAvailable() {
 return(available);
 }

 public void setPrice(float price) {
 this.price = price;
 }

 public float getPrice() {
 return(price);
 }
}

Listing 17.17 PopulateMusicTable.java

package coreservlets.jdo;

import java.util.*;
import java.io.*;
import javax.jdo.*;

/** Populate database with music records by using JDO.
 */
public class PopulateMusicTable {
 public static void main(String[] args) {
 // Create seven new music objects to place in the database.
 Music[] objects = {
 new Music(1, "Mozart", "No. 21 in C# minor", 7, 24.99F),
 new Music(2, "Beethoven", "No. 3 in C minor", 28, 10.99F),
 new Music(3, "Beethoven", "No. 5 Eb major", 33, 10.99F),
 new Music(4, "Rachmaninov", "No. 2 in C minor", 9, 18.99F),
 new Music(5, "Mozart", "No. 24 in C minor", 11, 21.99F),
 new Music(6, "Beethoven", "No. 4 in G", 33, 12.99F),
 new Music(7, "Liszt", "No. 1 in Eb major", 48, 10.99F)
 };

Listing 17.16 Music.java (continued)

Chapter 17 ■ Accessing Databases with JDBC552

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 // Load properties file with JDO information. The properties
 // file contains ORM Framework information specific to the
 // vendor and information for connecting to the database.
 Properties properties = new Properties();
 try {
 FileInputStream fis =
 new FileInputStream("jdo.properties");
 properties.load(fis);
 } catch(IOException ioe) {
 System.err.println("Problem loading properties file: " +
 ioe);
 return;
 }

 // Initialize manager for persistence framework.
 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(properties);
 PersistenceManager pm = pmf.getPersistenceManager();

 // Write the new Music objects to the database.
 Transaction transaction = pm.currentTransaction();
 transaction.begin();
 pm.makePersistentAll(objects);
 transaction.commit();
 pm.close ();
 }
}

Listing 17.18 jdo.properties

Configuration information for Kodo JDO Framework and
MySQL database.
javax.jdo.PersistenceManagerFactoryClass=

com.solarmetric.kodo.impl.jdbc.JDBCPersistenceManagerFactory
javax.jdo.option.RetainValues=true
javax.jdo.option.RestoreValues=true
javax.jdo.option.Optimistic=true
javax.jdo.option.NontransactionalWrite=false
javax.jdo.option.NontransactionalRead=true
javax.jdo.option.Multithreaded=true
javax.jdo.option.MsWait=5000
javax.jdo.option.MinPool=1
javax.jdo.option.MaxPool=80

Listing 17.17 PopulateMusicTable.java (continued)

17.7 Mapping Data to Objects by Using ORM Frameworks 553

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

javax.jdo.option.IgnoreCache=false
javax.jdo.option.ConnectionUserName: brown
javax.jdo.option.ConnectionURL: jdbc:mysql://localhost/csajsp
javax.jdo.option.ConnectionPassword: larry
javax.jdo.option.ConnectionDriverName: com.mysql.jdbc.Driver
com.solarmetric.kodo.impl.jdbc.WarnOnPersistentTypeFailure=true
com.solarmetric.kodo.impl.jdbc.SequenceFactoryClass=

com.solarmetric.kodo.impl.jdbc.schema.DBSequenceFactory
com.solarmetric.kodo.impl.jdbc.FlatInheritanceMapping=true
com.solarmetric.kodo.EnableQueryExtensions=false
com.solarmetric.kodo.DefaultFetchThreshold=30
com.solarmetric.kodo.DefaultFetchBatchSize=10
com.solarmetric.kodo.LicenseKey=5A8A-D98C-DB5F-6070-6000

Listing 17.18 jdo.properties (continued)

