
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

INTEGRATING
SERVLETS AND JSP:
THE MODEL VIEW

CONTROLLER (MVC)
ARCHITECTURE

Topics in This Chapter

• Understanding the benefits of MVC

• Using RequestDispatcher to implement MVC

• Forwarding requests from servlets to JSP pages

• Handling relative URLs

• Choosing among different display options

• Comparing data-sharing strategies

• Forwarding requests from JSP pages

• Including pages instead of forwarding to them

435© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

15

Servlets are good at data processing: reading and checking data, communicating with
databases, invoking business logic, and so on. JSP pages are good at presentation:
building HTML to represent the results of requests. This chapter describes how to
combine servlets and JSP pages to best make use of the strengths of each technology.

15.1 Understanding the
Need for MVC

Servlets are great when your application requires a lot of real programming to
accomplish its task. As illustrated earlier in this book, servlets can manipulate HTTP
status codes and headers, use cookies, track sessions, save information between
requests, compress pages, access databases, generate JPEG images on-the-fly, and
perform many other tasks flexibly and efficiently. But, generating HTML with serv-
lets can be tedious and can yield a result that is hard to modify.

That’s where JSP comes in: as illustrated in Figure 15–1, JSP lets you separate
much of the presentation from the dynamic content. That way, you can write the
HTML in the normal manner, even using HTML-specific tools and putting your Web
content developers to work on your JSP documents. JSP expressions, scriptlets, and
declarations let you insert simple Java code into the servlet that results from the JSP
page, and directives let you control the overall layout of the page. For more complex
requirements, you can wrap Java code inside beans or even define your own JSP tags.

F
or tutorials on popular M

V
C

 fram
ew

orks, please see:
• Struts tutorial at http://courses.coreservlets.com

/C
ourse-M

aterials/struts.htm
l

• JSF
/M

yF
aces tutorial at http://w

w
w

.coreservlets.com
/JSF

-Tutorial/

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture436

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–1 Strategies for invoking dynamic code from JSP.

Great. We have everything we need, right? Well, no, not quite. The assumption
behind a JSP document is that it provides a single overall presentation. What if you
want to give totally different results depending on the data that you receive? Script-
ing expressions, beans, and custom tags, although extremely powerful and flexible,
don’t overcome the limitation that the JSP page defines a relatively fixed, top-level
page appearance. Similarly, what if you need complex reasoning just to determine
the type of data that applies to the current situation? JSP is poor at this type of busi-
ness logic.

The solution is to use both servlets and JavaServer Pages. In this approach, known
as the Model View Controller (MVC) or Model 2 architecture, you let each technol-
ogy concentrate on what it excels at. The original request is handled by a servlet. The
servlet invokes the business-logic and data-access code and creates beans to repre-
sent the results (that’s the model). Then, the servlet decides which JSP page is appro-
priate to present those particular results and forwards the request there (the JSP
page is the view). The servlet decides what business logic code applies and which JSP
page should present the results (the servlet is the controller).

MVC Frameworks

The key motivation behind the MVC approach is the desire to separate the code that
creates and manipulates the data from the code that presents the data. The basic
tools needed to implement this presentation-layer separation are standard in the

Simple application or
small development team.

Complex application or
large development team.

• Call Java code directly. Place all Java code in JSP page.
Appropriate only for very small amounts of code. Chapter 11.

• Call Java code indirectly. Develop separate utility classes.
Insert into JSP page only the Java code needed to invoke the
utility classes. Chapter 11.

• Use beans. Develop separate utility classes structured as
beans. Use jsp:useBean, jsp:getProperty, and
jsp:setProperty to invoke the code. Chapter 14

• Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.
Forward to a JSP page to present results. JSP page uses beans.
This chapter.

• Use the JSP expression language. Use shorthand syntax to
access and output object properties. Usually used in
conjunction with beans and MVC. Chapter 16.

• Use custom tags. Develop tag handler classes. Invoke the tag
handlers with XML-like custom tags. Volume 2.

15.2 Implementing MVC with RequestDispatcher 437

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

servlet API and are the topic of this chapter. However, in very complex applications,
a more elaborate MVC framework is sometimes beneficial. The most popular of
these frameworks is Apache Struts; it is discussed at length in Volume 2 of this book.
Although Struts is useful and widely used, you should not feel that you must use
Struts in order to apply the MVC approach. For simple and moderately complex
applications, implementing MVC from scratch with RequestDispatcher is
straightforward and flexible. Do not be intimidated: go ahead and start with the basic
approach. In many situations, you will stick with the basic approach for the entire life
of your application. Even if you decide to use Struts or another MVC framework
later, you will recoup much of your investment because most of your work will also
apply to the elaborate frameworks.

Architecture or Approach?
The term “architecture” often connotes “overall system design.” Although many sys-
tems are indeed designed with MVC at their core, it is not necessary to redesign your
overall system just to make use of the MVC approach. Not at all. It is quite common
for applications to handle some requests with servlets, other requests with JSP pages,
and still others with servlets and JSP acting in conjunction as described in this chap-
ter. Do not feel that you have to rework your entire system architecture just to use
the MVC approach: go ahead and start applying it in the parts of your application
where it fits best.

15.2 Implementing MVC with
RequestDispatcher

The most important point about MVC is the idea of separating the business logic and
data access layers from the presentation layer. The syntax is quite simple, and in fact
you should be familiar with much of it already. Here is a quick summary of the
required steps; the following subsections supply details.

1. Define beans to represent the data. As you know from Section
14.2, beans are just Java objects that follow a few simple conventions.
Your first step is define beans to represent the results that will be pre-
sented to the user.

2. Use a servlet to handle requests. In most cases, the servlet reads
request parameters as described in Chapter 4.

3. Populate the beans. The servlet invokes business logic (application-
specific code) or data-access code (see Chapter 17) to obtain the
results. The results are placed in the beans that were defined in step 1.

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture438

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

4. Store the bean in the request, session, or servlet context. The
servlet calls setAttribute on the request, session, or servlet context
objects to store a reference to the beans that represent the results of
the request.

5. Forward the request to a JSP page. The servlet determines which
JSP page is appropriate to the situation and uses the forward method
of RequestDispatcher to transfer control to that page.

6. Extract the data from the beans. The JSP page accesses beans with
jsp:useBean and a scope matching the location of step 4. The
page then uses jsp:getProperty to output the bean properties.
The JSP page does not create or modify the bean; it merely extracts
and displays data that the servlet created.

Defining Beans to Represent the Data

Beans are Java objects that follow a few simple conventions. In this case, since a serv-
let or other Java routine (never a JSP page) will be creating the beans, the require-
ment for an empty (zero-argument) constructor is waived. So, your objects merely
need to follow the normal recommended practices of keeping the instance variables
private and using accessor methods that follow the get/set naming convention.

Since the JSP page will only access the beans, not create or modify them, a com-
mon practice is to define value objects: objects that represent results but have little or
no additional functionality.

Writing Servlets to Handle Requests

Once the bean classes are defined, the next task is to write a servlet to read the
request information. Since, with MVC, a servlet responds to the initial request, the
normal approaches of Chapters 4 and 5 are used to read request parameters and
request headers, respectively. The shorthand populateBean method of Chapter 4
can be used, but you should note that this technique populates a form bean (a Java
object representing the form parameters), not a result bean (a Java object represent-
ing the results of the request).

Although the servlets use the normal techniques to read the request information
and generate the data, they do not use the normal techniques to output the results.
In fact, with the MVC approach the servlets do not create any output; the output is
completely handled by the JSP pages. So, the servlets do not call response.set-
ContentType, response.getWriter, or out.println.

15.2 Implementing MVC with RequestDispatcher 439

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Populating the Beans

After you read the form parameters, you use them to determine the results of the
request. These results are determined in a completely application-specific manner.
You might call some business logic code, invoke an Enterprise JavaBeans compo-
nent, or query a database. No matter how you come up with the data, you need to
use that data to fill in the value object beans that you defined in the first step.

Storing the Results

You have read the form information. You have created data specific to the request.
You have placed that data in beans. Now you need to store those beans in a location
that the JSP pages will be able to access.

A servlet can store data for JSP pages in three main places: in the HttpServlet-
Request, in the HttpSession, and in the ServletContext. These storage loca-
tions correspond to the three nondefault values of the scope attribute of
jsp:useBean: that is, request, session, and application.

• Storing data that the JSP page will use only in this request.
First, the servlet would create and store data as follows:

ValueObject value = new ValueObject(...);

request.setAttribute("key", value);

Next, the servlet would forward the request to a JSP page that uses the
following to retrieve the data.

<jsp:useBean id="key" type="somePackage.ValueObject"

scope="request" />

Note that request attributes have nothing to do with request parame-
ters or request headers. The request attributes are independent of the
information coming from the client; they are just application-specific
entries in a hash table that is attached to the request object. This table
simply stores data in a place that can be accessed by both the current
servlet and JSP page, but not by any other resource or request.

• Storing data that the JSP page will use in this request and in
later requests from the same client. First, the servlet would create
and store data as follows:

ValueObject value = new ValueObject(...);

HttpSession session = request.getSession();

session.setAttribute("key", value);

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture440

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Next, the servlet would forward to a JSP page that uses the following
to retrieve the data:

<jsp:useBean id="key" type="somePackage.ValueObject"

 scope="session" />

• Storing data that the JSP page will use in this request and in
later requests from any client. First, the servlet would create and
store data as follows:

ValueObject value = new ValueObject(...);

getServletContext().setAttribute("key", value);

Next, the servlet would forward to a JSP page that uses the following
to retrieve the data:

<jsp:useBean id="key" type="somePackage.ValueObject"

scope="application" />

As described in Section 15.3, the servlet code is normally synchro-
nized to prevent the data changing between the servlet and the JSP
page.

Forwarding Requests to JSP Pages
You forward requests with the forward method of RequestDispatcher. You
obtain a RequestDispatcher by calling the getRequestDispatcher method of
ServletRequest, supplying a relative address. You are permitted to specify
addresses in the WEB-INF directory; clients are not allowed to directly access files in
WEB-INF, but the server is allowed to transfer control there. Using locations in WEB-INF
prevents clients from inadvertently accessing JSP pages directly, without first going
through the servlets that create the JSP data.

Core Approach

If your JSP pages only make sense in the context of servlet-generated
data, place the pages under the WEB-INF directory. That way, servlets can
forward requests to the pages, but clients cannot access them directly.

Once you have a RequestDispatcher, you use forward to transfer control to
the associated address. You supply the HttpServletRequest and HttpServlet-
Response as arguments. Note that the forward method of RequestDispatcher is

15.2 Implementing MVC with RequestDispatcher 441

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

quite different from the sendRedirect method of HttpServletRequest (Section
7.1). With forward, there is no extra response/request pair as with sendRedirect.
Thus, the URL displayed to the client does not change when you use forward.

Core Note

When you use the forward method of RequestDispatcher, the client
sees the URL of the original servlet, not the URL of the final JSP page.

For example, Listing 15.1 shows a portion of a servlet that forwards the request to
one of three different JSP pages, depending on the value of the operation request
parameter.

Forwarding to Static Resources
In most cases, you forward requests to JSP pages or other servlets. In some cases,
however, you might want to send requests to static HTML pages. In an e-commerce
site, for example, requests that indicate that the user does not have a valid account
name might be forwarded to an account application page that uses HTML forms to

Listing 15.1 Request Forwarding Example

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String operation = request.getParameter("operation");
 if (operation == null) {
 operation = "unknown";
 }
 String address;
 if (operation.equals("order")) {
 address = "/WEB-INF/Order.jsp";
 } else if (operation.equals("cancel")) {
 address = "/WEB-INF/Cancel.jsp";
 } else {
 address = "/WEB-INF/UnknownOperation.jsp";
 }
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
}

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture442

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

gather the requisite information. With GET requests, forwarding requests to a static
HTML page is perfectly legal and requires no special syntax; just supply the address of
the HTML page as the argument to getRequestDispatcher. However, since for-
warded requests use the same request method as the original request, POST requests
cannot be forwarded to normal HTML pages. The solution to this problem is to sim-
ply rename the HTML page to have a .jsp extension. Renaming somefile.html to
somefile.jsp does not change its output for GET requests, but somefile.html cannot
handle POST requests, whereas somefile.jsp gives an identical response for both GET
and POST.

Redirecting Instead of Forwarding

The standard MVC approach is to use the forward method of Request-
Dispatcher to transfer control from the servlet to the JSP page. However, when
you are using session-based data sharing, it is sometimes preferable to use
response.sendRedirect.

Here is a summary of the behavior of forward.

• Control is transferred entirely on the server. No network traffic is
involved.

• The user does not see the address of the destination JSP page and
pages can be placed in WEB-INF to prevent the user from accessing
them without going through the servlet that sets up the data. This is
beneficial if the JSP page makes sense only in the context of servlet-
generated data.

Here is a summary of sendRedirect.

• Control is transferred by sending the client a 302 status code and a
Location response header. Transfer requires an additional network
round trip.

• The user sees the address of the destination page and can bookmark it
and access it independently. This is beneficial if the JSP is designed to
use default values when data is missing. For example, this approach
would be used when redisplaying an incomplete HTML form or
summarizing the contents of a shopping cart. In both cases, previously
created data would be extracted from the user’s session, so the JSP
page makes sense even for requests that do not involve the servlet.

15.3 Summarizing MVC Code 443

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Extracting Data from Beans
Once the request arrives at the JSP page, the JSP page uses jsp:useBean and
jsp:getProperty to extract the data. For the most part, this approach is exactly as
described in Chapter 14. There are two differences however:

• The JSP page never creates the objects. The servlet, not the JSP
page, should create all the data objects. So, to guarantee that the JSP
page will not create objects, you should use

<jsp:useBean ... type="package.Class" />

instead of

<jsp:useBean ... class="package.Class" />.

• The JSP page should not modify the objects. So, you should use
jsp:getProperty but not jsp:setProperty.

The scope you specify should match the storage location used by the servlet. For
example, the following three forms would be used for request-, session-, and applica-
tion-based sharing, respectively.

<jsp:useBean id="key" type="somePackage.SomeBeanClass"
scope="request" />

<jsp:useBean id="key" type="somePackage.SomeBeanClass"
scope="session" />

<jsp:useBean id="key" type="somePackage.SomeBeanClass"
scope="application" />

15.3 Summarizing MVC Code

This section summarizes the code that would be used for request-based, session-
based, and application-based MVC approaches.

Request-Based Data Sharing
With request-based sharing, the servlet stores the beans in the HttpServlet-
Request, where they are accessible only to the destination JSP page.

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture444

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Servlet
ValueObject value = new ValueObject(...);
request.setAttribute("key", value);
RequestDispatcher dispatcher =

request.getRequestDispatcher("/WEB-INF/SomePage.jsp");
dispatcher.forward(request, response);

JSP Page
<jsp:useBean id="key" type="somePackage.ValueObject"

scope="request" />
<jsp:getProperty name="key" property="someProperty" />

Session-Based Data Sharing
With session-based sharing, the servlet stores the beans in the HttpSession, where
they are accessible to the same client in the destination JSP page or in other pages.

Servlet
ValueObject value = new ValueObject(...);
HttpSession session = request.getSession();
session.setAttribute("key", value);
RequestDispatcher dispatcher =

request.getRequestDispatcher("/WEB-INF/SomePage.jsp");
dispatcher.forward(request, response);

JSP Page
<jsp:useBean id="key" type="somePackage.ValueObject"

scope="session" />
<jsp:getProperty name="key" property="someProperty" />

Application-Based Data Sharing
With application-based sharing, the servlet stores the beans in the Servlet-
Context, where they are accessible to any servlet or JSP page in the Web applica-
tion. To guarantee that the JSP page extracts the same data that the servlet inserted,
you should synchronize your code as below.

Servlet
synchronized(this) {

ValueObject value = new ValueObject(...);
getServletContext().setAttribute("key", value);

15.4 Interpreting Relative URLs in the Destination Page 445

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

RequestDispatcher dispatcher =

request.getRequestDispatcher("/WEB-INF/SomePage.jsp");

dispatcher.forward(request, response);

}

JSP Page
<jsp:useBean id="key" type="somePackage.ValueObject"

scope="application" />

<jsp:getProperty name="key" property="someProperty" />

15.4 Interpreting Relative URLs
in the Destination Page

Although a servlet can forward the request to an arbitrary location on the same
server, the process is quite different from that of using the sendRedirect method
of HttpServletResponse. First, sendRedirect requires the client to reconnect
to the new resource, whereas the forward method of RequestDispatcher is
handled completely on the server. Second, sendRedirect does not automatically
preserve all of the request data; forward does. Third, sendRedirect results in a
different final URL, whereas with forward, the URL of the original servlet is
maintained.

This final point means that if the destination page uses relative URLs for images
or style sheets, it needs to make them relative to the servlet URL or the server root,
not to the destination page’s actual location. For example, consider the following
style sheet entry:

<LINK REL=STYLESHEET

HREF="my-styles.css"

TYPE="text/css">

If the JSP page containing this entry is accessed by means of a forwarded request,
my-styles.css will be interpreted relative to the URL of the originating servlet,
not relative to the JSP page itself, almost certainly resulting in an error. The simplest
solution to this problem is to give the full server path to the style sheet file, as follows.

<LINK REL=STYLESHEET

HREF="/path/my-styles.css"

TYPE="text/css">

The same approach is required for addresses used in and
.

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture446

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

15.5 Applying MVC: Bank
Account Balances

In this section, we apply the MVC approach to an application that displays bank
account balances. The controller servlet (Listing 15.2) reads a customer ID and
passes that to some data-access code that returns a BankCustomer value bean (List-
ing 15.3). The servlet then stores the bean in the HttpServletRequest object
where it will be accessible from destination JSP pages but nowhere else. If the
account balance of the resulting customer is negative, the servlet forwards to a page
designed for delinquent customers (Listing 15.4, Figure 15–2). If the customer has a
positive balance of less than $10,000, the servlet transfers to the standard balance-
display page (Listing 15.5, Figure 15–3). Next, if the customer has a balance of
$10,000 or more, the servlet forwards the request to a page reserved for elite custom-
ers (Listing 15.6, Figure 15–4). Finally, if the customer ID is unrecognized, an error
page is displayed (Listing 15.7, Figure 15–5).

Listing 15.2 ShowBalance.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that reads a customer ID and displays
 * information on the account balance of the customer
 * who has that ID.
 */

public class ShowBalance extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 BankCustomer customer =
 BankCustomer.getCustomer(request.getParameter("id"));
 String address;
 if (customer == null) {
 address = "/WEB-INF/bank-account/UnknownCustomer.jsp";
 } else if (customer.getBalance() < 0) {
 address = "/WEB-INF/bank-account/NegativeBalance.jsp";
 request.setAttribute("badCustomer", customer);

15.5 Applying MVC: Bank Account Balances 447

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 } else if (customer.getBalance() < 10000) {
 address = "/WEB-INF/bank-account/NormalBalance.jsp";
 request.setAttribute("regularCustomer", customer);
 } else {
 address = "/WEB-INF/bank-account/HighBalance.jsp";
 request.setAttribute("eliteCustomer", customer);
 }
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Listing 15.3 BankCustomer.java

package coreservlets;

import java.util.*;

/** Bean to represent a bank customer. */

public class BankCustomer {
 private String id, firstName, lastName;
 private double balance;

 public BankCustomer(String id,
 String firstName,
 String lastName,
 double balance) {
 this.id = id;
 this.firstName = firstName;
 this.lastName = lastName;
 this.balance = balance;
 }

 public String getId() {
 return(id);
 }

 public String getFirstName() {
 return(firstName);
 }

Listing 15.2 ShowBalance.java (continued)

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture448

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public String getLastName() {
 return(lastName);
 }

 public double getBalance() {
 return(balance);
 }

 public double getBalanceNoSign() {
 return(Math.abs(balance));
 }

 public void setBalance(double balance) {
 this.balance = balance;
 }

 // Makes a small table of banking customers.

 private static HashMap customers;

 static {
 customers = new HashMap();
 customers.put("id001",
 new BankCustomer("id001",
 "John",
 "Hacker",
 -3456.78));
 customers.put("id002",
 new BankCustomer("id002",
 "Jane",
 "Hacker",
 1234.56));
 customers.put("id003",
 new BankCustomer("id003",
 "Juan",
 "Hacker",
 987654.32));
 }

 /** Finds the customer with the given ID.
 * Returns null if there is no match.
 */

 public static BankCustomer getCustomer(String id) {
 return((BankCustomer)customers.get(id));
 }
}

Listing 15.3 BankCustomer.java (continued)

15.5 Applying MVC: Bank Account Balances 449

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 15.4 NegativeBalance.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>You Owe Us Money!</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 We Know Where You Live!</TABLE>
<P>

<jsp:useBean id="badCustomer"
 type="coreservlets.BankCustomer"
 scope="request" />
Watch out,
<jsp:getProperty name="badCustomer" property="firstName" />,
we know where you live.
<P>
Pay us the
$<jsp:getProperty name="badCustomer" property="balanceNoSign" />
you owe us before it is too late!
</BODY></HTML>

Listing 15.5 NormalBalance.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Your Balance</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Your Balance</TABLE>
<P>

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture450

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–2 The ShowCustomer servlet with an ID corresponding to a customer with a
negative balance.

<jsp:useBean id="regularCustomer"
 type="coreservlets.BankCustomer"
 scope="request" />

 First name: <jsp:getProperty name="regularCustomer"
 property="firstName" />
 Last name: <jsp:getProperty name="regularCustomer"
 property="lastName" />
 ID: <jsp:getProperty name="regularCustomer"
 property="id" />
 Balance: $<jsp:getProperty name="regularCustomer"
 property="balance" />

</BODY></HTML>

Listing 15.5 NormalBalance.jsp (continued)

15.5 Applying MVC: Bank Account Balances 451

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–3 The ShowCustomer servlet with an ID corresponding to a customer with a
normal balance.

Listing 15.6 HighBalance.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Your Balance</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Your Balance</TABLE>
<P>
<CENTER></CENTER>
<BR CLEAR="ALL">
<jsp:useBean id="eliteCustomer"
 type="coreservlets.BankCustomer"
 scope="request" />
It is an honor to serve you,
<jsp:getProperty name="eliteCustomer" property="firstName" />
<jsp:getProperty name="eliteCustomer" property="lastName" />!

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture452

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–4 The ShowCustomer servlet with an ID corresponding to a customer with a
high balance.

<P>
Since you are one of our most valued customers, we would like
to offer you the opportunity to spend a mere fraction of your
$<jsp:getProperty name="eliteCustomer" property="balance" />
on a boat worthy of your status. Please visit our boat store for
more information.
</BODY></HTML>

Listing 15.6 HighBalance.jsp (continued)

15.6 Comparing the Three Data-Sharing Approaches 453

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–5 The ShowCustomer servlet with an unknown customer ID.

15.6 Comparing the Three
Data-Sharing Approaches

In the MVC approach, a servlet responds to the initial request. The servlet invokes
code that fetches or creates the business data, places that data in beans, stores the
beans, and forwards the request to a JSP page to present the results. But, where does
the servlet store the beans?

The most common answer is, in the request object. That is the only location to
which the JSP page has sole access. However, you sometimes want to keep the results

Listing 15.7 UnknownCustomer.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Unknown Customer</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Unknown Customer</TABLE>
<P>
Unrecognized customer ID.
</BODY></HTML>

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture454

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

around for the same client (session-based sharing) or store Web-application-wide
data (application-based sharing).

This section gives a brief example of each of these approaches.

Request-Based Sharing
In this example, our goal is to display a random number to the user. Each request
should result in a new number, so request-based sharing is appropriate.

To implement this behavior, we need a bean to store numbers (Listing 15.8), a
servlet to populate the bean with a random value (Listing 15.9), and a JSP page to
display the results (Listing 15.10, Figure 15–6).

Listing 15.8 NumberBean.java

package coreservlets;

public class NumberBean {
 private double num = 0;

 public NumberBean(double number) {
 setNumber(number);
 }

 public double getNumber() {
 return(num);
 }

 public void setNumber(double number) {
 num = number;
 }
}

Listing 15.9 RandomNumberServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that generates a random number, stores it in a bean,
 * and forwards to JSP page to display it.
 */

15.6 Comparing the Three Data-Sharing Approaches 455

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–6 Result of RandomNumberServlet.

public class RandomNumberServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 NumberBean bean = new NumberBean(Math.random());
 request.setAttribute("randomNum", bean);
 String address = "/WEB-INF/mvc-sharing/RandomNum.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Listing 15.10 RandomNum.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Random Number</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<jsp:useBean id="randomNum" type="coreservlets.NumberBean"
 scope="request" />
<H2>Random Number:
<jsp:getProperty name="randomNum" property="number" />
</H2>
</BODY></HTML>

Listing 15.9 RandomNumberServlet.java (continued)

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture456

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Session-Based Sharing
In this example, our goal is to display users’ first and last names. If the users fail to
tell us their name, we want to use whatever name they gave us previously. If the users
do not explicitly specify a name and no previous name is found, a warning should be
displayed. Data is stored for each client, so session-based sharing is appropriate.

To implement this behavior, we need a bean to store names (Listing 15.11), a serv-
let to retrieve the bean from the session and populate it with first and last names
(Listing 15.12), and a JSP page to display the results (Listing 15.13, Figures 15–7 and
15–8).

Listing 15.11 NameBean.java

package coreservlets;

public class NameBean {
 private String firstName = "Missing first name";
 private String lastName = "Missing last name";

 public NameBean() {}

 public NameBean(String firstName, String lastName) {
 setFirstName(firstName);
 setLastName(lastName);
 }

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String newFirstName) {
 firstName = newFirstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String newLastName) {
 lastName = newLastName;
 }
}

15.6 Comparing the Three Data-Sharing Approaches 457

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 15.12 RegistrationServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Reads firstName and lastName request parameters and forwards
 * to JSP page to display them. Uses session-based bean sharing
 * to remember previous values.
 */

public class RegistrationServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 HttpSession session = request.getSession();
 NameBean nameBean =
 (NameBean)session.getAttribute("nameBean");
 if (nameBean == null) {
 nameBean = new NameBean();
 session.setAttribute("nameBean", nameBean);
 }
 String firstName = request.getParameter("firstName");
 if ((firstName != null) && (!firstName.trim().equals(""))) {
 nameBean.setFirstName(firstName);
 }
 String lastName = request.getParameter("lastName");
 if ((lastName != null) && (!lastName.trim().equals(""))) {
 nameBean.setLastName(lastName);
 }
 String address = "/WEB-INF/mvc-sharing/ShowName.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture458

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–7 Result of RegistrationServlet when one parameter is missing and no
session data is found.

Listing 15.13 ShowName.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Thanks for Registering</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Thanks for Registering</H1>
<jsp:useBean id="nameBean" type="coreservlets.NameBean"
 scope="session" />
<H2>First Name:
<jsp:getProperty name="nameBean" property="firstName" /></H2>
<H2>Last Name:
<jsp:getProperty name="nameBean" property="lastName" /></H2>
</BODY></HTML>

15.6 Comparing the Three Data-Sharing Approaches 459

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–8 Result of RegistrationServlet when one parameter is missing and
session data is found.

Application-Based Sharing

In this example, our goal is to display a prime number of a specified length. If the
user fails to tell us the desired length, we want to use whatever prime number we
most recently computed for any user. Data is shared among multiple clients, so
application-based sharing is appropriate.

To implement this behavior, we need a bean to store prime numbers (Listing
15.14, which uses the Primes class presented earlier in Section 7.4), a servlet to
populate the bean and store it in the ServletContext (Listing 15.15), and a JSP
page to display the results (Listing 15.16, Figures 15–9 and 15–10).

Listing 15.14 PrimeBean.java

package coreservlets;

import java.math.BigInteger;

public class PrimeBean {
 private BigInteger prime;

 public PrimeBean(String lengthString) {
 int length = 150;
 try {
 length = Integer.parseInt(lengthString);
 } catch(NumberFormatException nfe) {}
 setPrime(Primes.nextPrime(Primes.random(length)));
 }

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture460

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public BigInteger getPrime() {
 return(prime);
 }

 public void setPrime(BigInteger newPrime) {
 prime = newPrime;
 }
}

Listing 15.15 PrimeServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PrimeServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String length = request.getParameter("primeLength");
 ServletContext context = getServletContext();
 synchronized(this) {
 if ((context.getAttribute("primeBean") == null) ||
 (length != null)) {
 PrimeBean primeBean = new PrimeBean(length);
 context.setAttribute("primeBean", primeBean);
 }
 String address = "/WEB-INF/mvc-sharing/ShowPrime.jsp";
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
 }
}

Listing 15.14 PrimeBean.java (continued)

15.6 Comparing the Three Data-Sharing Approaches 461

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 15–9 Result of PrimeServlet when an explicit prime size is given: a new
prime of that size is computed.

Figure 15–10 Result of PrimeServlet when no explicit prime size is given: the
previous number is shown and no new prime is computed.

Listing 15.16 ShowPrime.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>A Prime Number</TITLE>
<LINK REL=STYLESHEET
 HREF="/bank-support/JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>A Prime Number</H1>
<jsp:useBean id="primeBean" type="coreservlets.PrimeBean"
 scope="application" />
<jsp:getProperty name="primeBean" property="prime" />
</BODY></HTML>

Chapter 15 ■ Integrating Servlets and JSP: The MVC Architecture462

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

15.7 Forwarding Requests
from JSP Pages

The most common request-forwarding scenario is one in which the request first
goes to a servlet and the servlet forwards the request to a JSP page. The reason a
servlet usually handles the original request is that checking request parameters and
setting up beans requires a lot of programming, and it is more convenient to do this
programming in a servlet than in a JSP document. The reason that the destination
page is usually a JSP document is that JSP simplifies the process of creating the
HTML content.

However, just because this is the usual approach doesn’t mean that it is the only
way of doing things. It is certainly possible for the destination page to be a servlet.
Similarly, it is quite possible for a JSP page to forward requests elsewhere. For exam-
ple, a request might go to a JSP page that normally presents results of a certain type
and that forwards the request elsewhere only when it receives unexpected values.

Sending requests to servlets instead of JSP pages requires no changes whatsoever
in the use of the RequestDispatcher. However, there is special syntactic support
for forwarding requests from JSP pages. In JSP, the jsp:forward action is simpler
and easier to use than wrapping RequestDispatcher code in a scriptlet. This
action takes the following form:

<jsp:forward page="Relative URL" />

The page attribute is allowed to contain JSP expressions so that the destination can
be computed at request time. For example, the following code sends about half the vis-
itors to http://host/examples/page1.jsp and the others to http://host/examples/
page2.jsp.

<% String destination;
if (Math.random() > 0.5) {

destination = "/examples/page1.jsp";
} else {

destination = "/examples/page2.jsp";
}

%>
<jsp:forward page="<%= destination %>" />

The jsp:forward action, like jsp:include, can make use of jsp:param ele-
ments to supply extra request parameters to the destination page. For details, see the
discussion of jsp:include in Section 13.2.

15.8 Including Pages 463

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

15.8 Including Pages

The forward method of RequestDispatcher relies on the destination JSP page
to generate the complete output. The servlet is not permitted to generate any output
of its own.

An alternative to forward is include. With include, the servlet can combine
its output with that of one or more JSP pages. More commonly, the servlet still relies
on JSP pages to produce the output, but the servlet invokes different JSP pages to
create different sections of the page. Does this sound familiar? It should: the
include method of RequestDispatcher is the code that the jsp:include
action (Section 13.1) invokes behind the scenes.

This approach is most common when your servlets create portal sites that let users
specify where on the page they want various pieces of content to be displayed. Here
is a representative example.

String firstTable, secondTable, thirdTable;
if (someCondition) {

firstTable = "/WEB-INF/Sports-Scores.jsp";
secondTable = "/WEB-INF/Stock-Prices.jsp";
thirdTable = "/WEB-INF/Weather.jsp";

} else if (...) { ... }
RequestDispatcher dispatcher =

request.getRequestDispatcher("/WEB-INF/Header.jsp");
dispatcher.include(request, response);
dispatcher =

request.getRequestDispatcher(firstTable);
dispatcher.include(request, response);
dispatcher =

request.getRequestDispatcher(secondTable);
dispatcher.include(request, response);
dispatcher =

request.getRequestDispatcher(thirdTable);
dispatcher.include(request, response);
dispatcher =

request.getRequestDispatcher("/WEB-INF/Footer.jsp");
dispatcher.include(request, response);

