
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

CONTROLLING THE
STRUCTURE OF

GENERATED SERVLETS:
THE JSP PAGE

DIRECTIVE
Topics in This Chapter

• Understanding the purpose of the page directive

• Designating which classes are imported

• Specifying the MIME type of the page

• Generating Excel spreadsheets

• Participating in sessions

• Setting the size and behavior of the output buffer

• Designating pages to handle JSP errors

• Controlling threading behavior

• Using XML-compatible syntax for directives

353© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

12

A JSP directive affects the overall structure of the servlet that results from the JSP
page. The following templates show the two possible forms for directives. Single
quotes can be substituted for the double quotes around the attribute values, but the
quotation marks cannot be omitted altogether. To obtain quotation marks within an
attribute value, precede them with a backslash, using \’ for ’ and \" for ".

<%@ directive attribute="value" %>

<%@ directive attribute1="value1"

 attribute2="value2"

 ...

 attributeN="valueN" %>

In JSP, there are three main types of directives: page, include, and taglib.
The page directive lets you control the structure of the servlet by importing classes,
customizing the servlet superclass, setting the content type, and the like. A page
directive can be placed anywhere within the document; its use is the topic of this
chapter. The second directive, include, lets you insert a file into the JSP page at the
time the JSP file is translated into a servlet. An include directive should be placed
in the document at the point at which you want the file to be inserted; it is discussed
in Chapter 13. The third directive, taglib, defines custom markup tags; it is dis-
cussed at great length in Volume 2 of this book, where there are several chapters on
custom tag libraries.

The page directive lets you define one or more of the following case-sensitive
attributes (listed in approximate order of frequency of use): import, contentType,
pageEncoding, session, isELIgnored (JSP 2.0 only), buffer, autoFlush,

Chapter 12 ■ The JSP page Directive354

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

info, errorPage, isErrorPage, isThreadSafe, language, and extends.
These attributes are explained in the following sections.

12.1 The import Attribute

The import attribute of the page directive lets you specify the packages that should
be imported by the servlet into which the JSP page gets translated. As discussed in
Section 11.3 (Limiting the Amount of Java Code in JSP Pages) and illustrated in Fig-
ure 12–1, using separate utility (helper) classes makes your dynamic code easier to
write, maintain, debug, test, and reuse.

Figure 12–1 Strategies for invoking dynamic code from JSP.

When you use utility classes, remember that they should always be in packages.
For one thing, packages are a good strategy on any large project because they help
protect against name conflicts. With JSP, however, packages are absolutely required.
The reason is that, in the absence of packages, classes you reference are assumed to
be in the same package as the current class. For example, suppose that a JSP page
contains the following scriptlet.

<% Test t = new Test(); %>

Now, if Test is in an imported package, there is no ambiguity. But, if Test is not
in a package or the package to which Test belongs is not explicitly imported, then

Simple application or
small development team.

Complex application or
large development team.

• Call Java code directly. Place all Java code in JSP page.
Appropriate only for very small amounts of code.

• Call Java code indirectly. Develop separate utility classes.
Insert into JSP page only the Java code needed to invoke the
utility classes. These utilities must use packages, and the JSP
page should use the import attribute.

• Use beans. Develop separate utility classes structured as
beans. Use jsp:useBean, jsp:getProperty, and
jsp:setProperty to invoke the code.

• Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.
Forward to a JSP page to present results. JSP page uses beans.

• Use the JSP expression language. Use shorthand syntax to
access and output object properties. Usually used in
conjunction with beans and MVC.

• Use custom tags. Develop tag handler classes. Invoke the tag
handlers with XML-like custom tags.

12.1 The import Attribute 355

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

the system will assume that Test is in the same package as the autogenerated serv-
let. The problem is that the autogenerated servlet’s package is not known! It is quite
common for servers to create servlets whose package is determined by the directory
in which the JSP page is placed. Other servers use different approaches. So, you sim-
ply cannot rely on packageless classes working properly. The same argument applies
to beans (Chapter 14), since beans are just classes that follow some simple naming
and structure conventions.

Core Approach

Always put your utility classes and beans in packages.

By default, the servlet imports java.lang.*, javax.servlet.*,
javax.servlet.jsp.*, javax.servlet.http.*, and possibly some number
of server-specific entries. Never write JSP code that relies on any server-specific
classes being imported automatically; doing so makes your code nonportable.

Use of the import attribute takes one of the following two forms.

<%@ page import="package.class" %>

<%@ page import="package.class1,...,package.classN" %>

For example, the following directive signifies that all classes in the java.util
package should be available to use without explicit package identifiers.

<%@ page import="java.util.*" %>

The import attribute is the only page attribute that is allowed to appear multiple
times within the same document. Although page directives can appear anywhere
within the document, it is traditional to place import statements either near the top
of the document or just before the first place that the referenced package is used.

Note that, although the JSP pages go in the normal HTML directories of the
server, the classes you write that are used by JSP pages must be placed in the special
Java-code directories (e.g., .../WEB-INF/classes/directoryMatchingPackageName). See
Sections 2.10 (Deployment Directories for Default Web Application: Summary) and
2.11 (Web Applications: A Preview) for information on these directories.

For example, Listing 12.1 presents a page that illustrates each of the three script-
ing elements from the previous chapter. The page uses three classes not in the stan-
dard JSP import list: java.util.Date, coreservlets.CookieUtilities
(see Listing 8.3), and coreservlets.LongLivedCookie (see Listing 8.4). So, to
simplify references to these classes, the JSP page uses

<%@ page import="java.util.*,coreservlets.*" %>

Chapter 12 ■ The JSP page Directive356

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figures 12–2 and 12–3 show some typical results.

Listing 12.1 ImportAttribute.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>The import Attribute</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H2>The import Attribute</H2>
<%-- JSP page Directive --%>
<%@ page import="java.util.*,coreservlets.*" %>
<%-- JSP Declaration --%>
<%!
private String randomID() {
 int num = (int)(Math.random()*10000000.0);
 return("id" + num);
}
private final String NO_VALUE = "<I>No Value</I>";
%>
<%-- JSP Scriptlet --%>
<%
String oldID =
 CookieUtilities.getCookieValue(request, "userID", NO_VALUE);
if (oldID.equals(NO_VALUE)) {
 String newID = randomID();
 Cookie cookie = new LongLivedCookie("userID", newID);
 response.addCookie(cookie);
}
%>
<%-- JSP Expressions --%>
This page was accessed on <%= new Date() %> with a userID
cookie of <%= oldID %>.
</BODY></HTML>

12.2 The contentType and pageEncoding Attributes 357

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 12–2 ImportAttribute.jsp when first accessed.

Figure 12–3 ImportAttribute.jsp when accessed in a subsequent request.

12.2 The contentType and
pageEncoding Attributes

The contentType attribute sets the Content-Type response header, indicating
the MIME type of the document being sent to the client. For more information on
MIME types, see Table 7.1 (Common MIME Types) in Section 7.2 (Understanding
HTTP 1.1 Response Headers).

Use of the contentType attribute takes one of the following two forms.

<%@ page contentType="MIME-Type" %>

<%@ page contentType="MIME-Type; charset=Character-Set" %>

Chapter 12 ■ The JSP page Directive358

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

For example, the directive

<%@ page contentType="application/vnd.ms-excel" %>

has the same basic effect as the scriptlet

<% response.setContentType("application/vnd.ms-excel"); %>

The first difference between the two forms is that response.setContentType
uses explicit Java code (an approach some developers try to avoid), whereas the page
directive uses only JSP syntax. The second difference is that directives are parsed
specially; they don’t directly become _jspService code at the location at which
they appear. This means that response.setContentType can be invoked condi-
tionally whereas the page directive cannot be. Setting the content type conditionally
is useful when the same content can be displayed in different forms—for an example,
see the next section (Conditionally Generating Excel Spreadsheets).

Unlike regular servlets, for which the default MIME type is text/plain, the default
for JSP pages is text/html (with a default character set of ISO-8859-1). Thus, JSP
pages that output HTML in a Latin character set need not use contentType at all. If
you want to change both the content type and the character set, you can do the
following.

<%@ page contentType="someMimeType; charset=someCharacterSet" %>

However, if you only want to change the character set, it is simpler to use the
pageEncoding attribute. For example, Japanese JSP pages might use the following.

<%@ page pageEncoding="Shift_JIS" %>

Generating Excel Spreadsheets

Listing 12.2 shows a JSP page that uses the contentType attribute and tab-sepa-
rated data to generate Excel output. Note that the page directive and comment are
at the bottom so that the carriage returns at the ends of the lines don’t show up in the
Excel document. (Note: JSP does not ignore white space—JSP usually generates
HTML in which most white space is ignored by the browser, but JSP itself maintains
the white space and sends it to the client.) Figure 12–4 shows the result in Internet
Explorer on a system that has Microsoft Office installed.

12.3 Conditionally Generating Excel Spreadsheets 359

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 12–4 Excel document (Excel.jsp) in Internet Explorer.

12.3 Conditionally Generating
Excel Spreadsheets

In most cases in which you generate non-HTML content with JSP, you know the con-
tent type in advance. In those cases, the contentType attribute of the page direc-
tive is appropriate: it requires no explicit Java syntax and can appear anywhere in the
page.

Occasionally, however, you may want to build the same content, but change the
listed content type depending on the situation. For example, many word processing
and desktop publishing systems can import HTML pages. So, you could arrange to
have the page come up either in the publishing system or in the browser, depending
on the content type you send. Similarly, Microsoft Excel can import tables that are
represented in HTML with the TABLE tag. This capability suggests a simple method
of returning either HTML or Excel content, depending on which the user prefers:
just use an HTML table and set the content type to application/vnd.ms-excel
only if the user requests the results in Excel.

Listing 12.2 Excel.jsp

First Last Email Address
Marty Hall hall@coreservlets.com
Larry Brown brown@coreservlets.com
Steve Balmer balmer@ibm.com
Scott McNealy mcnealy@microsoft.com
<%@ page contentType="application/vnd.ms-excel" %>
<%-- There are tabs, not spaces, between columns. --%>

Chapter 12 ■ The JSP page Directive360

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Unfortunately, this approach brings to light a small deficiency in the page direc-
tive: attribute values cannot be computed at runtime, nor can page directives be
conditionally inserted as can template text. So, the following attempt results in Excel
content regardless of the result of the checkUserRequest method.

<% boolean usingExcel = checkUserRequest(request); %>
<% if (usingExcel) { %>
<%@ page contentType="application/vnd.ms-excel" %>
<% } %>

Fortunately, there is a simple solution to the problem of conditionally setting the
content type: just use scriptlets and the normal servlet approach of response.set-
ContentType, as in the following snippet:

<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
 response.setContentType("application/vnd.ms-excel");
}
%>

For example, we once worked on a project that displayed financial (budget) infor-
mation to authorized users. The data could be displayed in a table in a regular Web
page if the user merely wanted to review it, or it could be placed into an Excel
spreadsheet if the user wanted to put it into a report. When we first joined the
project, there were two entirely separate pieces of code for each task. We changed it
to build the same HTML table either way and to merely change the content type.
Voila!

Listing 12.3 shows a page that uses this approach; Figures 12–5 and 12–6 show
the results. In a real application, of course, the data would almost certainly come
from a database. We use static values here for simplicity, but see Chapter 17 (Access-
ing Databases with JDBC) for information on talking to relational databases from
servlets and JSP pages.

Listing 12.3 ApplesAndOranges.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Comparing Apples and Oranges</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

12.3 Conditionally Generating Excel Spreadsheets 361

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 12–5 The default result of ApplesAndOranges.jsp is HTML content.

<BODY>
<CENTER>
<H2>Comparing Apples and Oranges</H2>
<%
String format = request.getParameter("format");
if ((format != null) && (format.equals("excel"))) {
 response.setContentType("application/vnd.ms-excel");
}
%>
<TABLE BORDER=1>
 <TR><TH></TH> <TH>Apples<TH>Oranges
 <TR><TH>First Quarter <TD>2307 <TD>4706
 <TR><TH>Second Quarter<TD>2982 <TD>5104
 <TR><TH>Third Quarter <TD>3011 <TD>5220
 <TR><TH>Fourth Quarter<TD>3055 <TD>5287
</TABLE>
</CENTER></BODY></HTML>

Listing 12.3 ApplesAndOranges.jsp (continued)

Chapter 12 ■ The JSP page Directive362

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 12–6 Specifying format=excel for ApplesAndOranges.jsp results in Excel
content.

12.4 The session Attribute

The session attribute controls whether the page participates in HTTP sessions.
Use of this attribute takes one of the following two forms.

<%@ page session="true" %> <%-- Default --%>

<%@ page session="false" %>

A value of true (the default) signifies that the predefined variable session (of
type HttpSession) should be bound to the existing session if one exists; otherwise,
a new session should be created and bound to session. A value of false means
that no sessions will be automatically created and that attempts to access the variable
session will result in errors at the time the JSP page is translated into a servlet.

Using session="false" may save significant amounts of server memory on
high-traffic sites. However, note that using session="false" does not disable ses-
sion tracking—it merely prevents the JSP page from creating new sessions for users
who don’t have them already. So, since sessions are user specific, not page specific, it
doesn’t do any good to turn off session tracking for one page unless you also turn it
off for related pages that are likely to be visited in the same client session.

12.5 The isELIgnored Attribute 363

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

12.5 The isELIgnored Attribute

The isELIgnored attribute controls whether the JSP 2.0 Expression Language
(EL) is ignored (true) or evaluated normally (false). This attribute is new in JSP
2.0; it is illegal to use it in a server that supports only JSP 1.2 or earlier. The default
value of the attribute depends on the version of web.xml you use for your Web appli-
cation. If your web.xml specifies servlets 2.3 (corresponding to JSP 1.2) or earlier, the
default is true (but it is still legal to change the default—you are permitted to use
this attribute in a JSP-2.0-compliant server regardless of the web.xml version). If
your web.xml specifies servlets 2.4 (corresponding to JSP 2.0) or later, the default is
false. Use of this attribute takes one of the following two forms.

<%@ page isELIgnored="false" %>
<%@ page isELIgnored="true" %>

JSP 2.0 introduced a concise expression language for accessing request parameters,
cookies, HTTP headers, bean properties and Collection elements from within a
JSP page. For details, see Chapter 16 (Simplifying Access to Java Code: The JSP 2.0
Expression Language). Expressions in the JSP EL take the form ${expression}.
Normally, these expressions are convenient. However, what would happen if you had
a JSP 1.2 page that, just by happenstance, contained a string of the form ${...}? In
JSP 2.0, this could cause problems. Using isELIgnored="true" prevents these
problems.

12.6 The buffer and autoFlush
Attributes

The buffer attribute specifies the size of the buffer used by the out variable, which
is of type JspWriter. Use of this attribute takes one of two forms:

<%@ page buffer="sizekb" %>
<%@ page buffer="none" %>

Servers can use a larger buffer than you specify, but not a smaller one. For exam-
ple, <%@ page buffer="32kb" %> means the document content should be buff-
ered and not sent to the client until at least 32 kilobytes are accumulated, the page is
completed, or the output is explicitly flushed (e.g., with response.flushBuffer).
The default buffer size is server specific, but must be at least 8 kilobytes. Be cautious
about turning off buffering; doing so requires JSP elements that set headers or status
codes to appear at the top of the file, before any HTML content. On the other hand,

Chapter 12 ■ The JSP page Directive364

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

disabling buffering or using a small buffer is occasionally useful when it takes a very
long time to generate each line of the output; in this scenario, users would see each
line as soon as it is ready, rather than waiting even longer to see groups of lines.

The autoFlush attribute controls whether the output buffer should be automat-
ically flushed when it is full (the default) or whether an exception should be raised
when the buffer overflows (autoFlush="false"). Use of this attribute takes one
of the following two forms.

<%@ page autoFlush="true" %> <%-- Default --%>
<%@ page autoFlush="false" %>

A value of false is illegal when buffer="none" is also used. Use of auto-
Flush="false" is exceedingly rare when the client is a normal Web browser. How-
ever, if the client is a custom application, you might want to guarantee that the
application either receives a complete message or no message at all. A value of
false could also be used to catch database queries that generate too much data, but
it is generally better to place that logic in the data access code, not the presentation
code.

12.7 The info Attribute

The info attribute defines a string that can be retrieved from the servlet by means
of the getServletInfo method. Use of info takes the following form.

<%@ page info="Some Message" %>

12.8 The errorPage and
isErrorPage Attributes

The errorPage attribute specifies a JSP page that should process any exceptions
(i.e., something of type Throwable) thrown but not caught in the current page. It is
used as follows:

<%@ page errorPage="Relative URL" %>

The exception thrown will automatically be available to the designated error page
by means of the exception variable.

12.8 The errorPage and isErrorPage Attributes 365

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The isErrorPage attribute indicates whether or not the current page can act as
the error page for another JSP page. Use of isErrorPage takes one of the follow-
ing two forms:

<%@ page isErrorPage="true" %>

<%@ page isErrorPage="false" %> <%-- Default --%>

For example, Listing 12.4 shows a JSP page that computes speed based on dis-
tance and time parameters. The page neglects to check whether the input parame-
ters are missing or malformed, so an error could easily occur at runtime. However,
the page designates SpeedErrors.jsp (Listing 12.5) as the page to handle errors that
occur in ComputeSpeed.jsp, so the user does not receive the typical terse JSP error
messages. Note that SpeedErrors.jsp is placed in the WEB-INF directory. Because serv-
ers prohibit direct client access to WEB-INF, this arrangement prevents clients from
accidentally accessing SpeedErrors.jsp directly. When an error occurs, Speed-
Errors.jsp is accessed by the server, not by the client: error pages of this sort do not
result in response.sendRedirect calls, and the client sees only the URL of the
originally requested page, not the URL of the error page.

Figures 12–7 and 12–8 show results when good and bad input parameters are
received, respectively.

Note that the errorPage attribute designates page-specific error pages. To des-
ignate error pages that apply to an entire Web application or to various categories of
errors within an application, use the error-page element in web.xml. For details,
see Volume 2 of this book.

Listing 12.4 ComputeSpeed.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Computing Speed</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<%@ page errorPage="/WEB-INF/SpeedErrors.jsp" %>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Computing Speed</TABLE>
<%!
// Note lack of try/catch for NumberFormatException if
// value is null or malformed.

Chapter 12 ■ The JSP page Directive366

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

private double toDouble(String value) {
 return(Double.parseDouble(value));
}
%>
<%
double furlongs = toDouble(request.getParameter("furlongs"));
double fortnights = toDouble(request.getParameter("fortnights"));
double speed = furlongs/fortnights;
%>

 Distance: <%= furlongs %> furlongs.
 Time: <%= fortnights %> fortnights.
 Speed: <%= speed %> furlongs per fortnight.

</BODY></HTML>

Listing 12.5 SpeedErrors.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Error Computing Speed</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<%@ page isErrorPage="true" %>
<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Error Computing Speed</TABLE>
<P>
ComputeSpeed.jsp reported the following error:
<I><%= exception %></I>. This problem occurred in the
following place:
<PRE>
<%@ page import="java.io.*" %>
<% exception.printStackTrace(new PrintWriter(out)); %>
</PRE>
</BODY></HTML>

Listing 12.4 ComputeSpeed.jsp (continued)

12.9 The isThreadSafe Attribute 367

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 12–7 ComputeSpeed.jsp when it receives legal values.

Figure 12–8 ComputeSpeed.jsp when it receives illegal values. Note that the address
line shows the URL of ComputeSpeed.jsp, not SpeedErrors.jsp.

12.9 The isThreadSafe Attribute

The isThreadSafe attribute controls whether the servlet that results from the JSP
page will allow concurrent access (the default) or will guarantee that no servlet
instance processes more than one request at a time (isThreadSafe="false").
Use of the isThreadSafe attribute takes one of the following two forms.

<%@ page isThreadSafe="true" %> <%-- Default --%>
<%@ page isThreadSafe="false" %>

Chapter 12 ■ The JSP page Directive368

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Unfortunately, the standard mechanism for preventing concurrent access is to imple-
ment the SingleThreadModel interface (Section 3.7). Although Single-
ThreadModel and isThreadSafe="false" were recommended in the early
days, recent experience has shown that SingleThreadModel was so poorly
designed that it is basically useless. So, you should avoid isThreadSafe and use
explicit synchronization instead.

Core Warning

Do not use isThreadSafe. Use explicit synchronization instead.

To understand why isThreadSafe="false" is a bad idea, consider the follow-
ing non-thread-safe snippet to compute user IDs. It is not thread safe since a thread
could be preempted after reading idNum but before updating it, yielding two users
with the same user ID.

<%! private int idNum = 0; %>
<%
String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");
idNum = idNum + 1;
%>

The code should have used a synchronized block. This construct is written

synchronized(someObject) { ... }

and means that once a thread enters the block of code, no other thread can enter
the same block (or any other block marked with the same object reference) until
the first thread exits. So, the previous snippet should have been written in the fol-
lowing manner.

<%! private int idNum = 0; %>
<%
synchronized(this) {

String userID = "userID" + idNum;
out.println("Your ID is " + userID + ".");
idNum = idNum + 1;

}
%>

There are two reasons why this explicitly synchronized version is superior to the
original version with the addition of <%@ page isThreadSafe="false" %>.

12.10 The extends Attribute 369

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

First, the explicitly synchronized version will probably have much better perfor-
mance if the page is accessed frequently. The reason is that most JSP pages are not
CPU limited but are I/O limited. So, while the system waits for I/O (e.g., a response
from a database, the result of an EJB call, output sent over the network to the user), it
should be doing something else. Since most servers implement SingleThreadModel
by queueing up requests and handling them one at a time, high-traffic JSP pages can
be much slower with this approach.

Even worse, the version that uses SingleThreadModel might not even get the
right answer! Rather than queueing up requests, servers are permitted to implement
SingleThreadModel by making a pool of servlet instances, as long as no instance
is invoked concurrently. This, of course, totally defeats the purpose of using fields for
persistence, since each instance would have a different field (instance variable), and
multiple users could still get the same user ID. Defining the idNum field as static
does not solve the problem either; the this reference would be different for each
servlet instance, so the protection would be ineffective.

These problems are basically intractable. Give up. Forget SingleThreadModel
and isThreadSafe="false". Synchronize your code explicitly instead.

12.10 The extends Attribute

The extends attribute designates the superclass of the servlet that will be generated
for the JSP page. It takes the following form.

<%@ page extends="package.class" %>

This attribute is normally reserved for developers or vendors that implement fun-
damental changes to the way in which pages operate (e.g., to add in personalization
features). Ordinary mortals should steer clear of this attribute except when referring
to classes provided by the server vendor for this purpose.

12.11 The language Attribute

At some point, the language attribute is intended to specify the scripting language
being used, as below.

<%@ page language="cobol" %>

For now, don’t bother with this attribute since java is both the default and the
only legal choice.

Chapter 12 ■ The JSP page Directive370

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

12.12 XML Syntax for Directives

If you are writing XML-compatible JSP pages, you can use an alternative XML-com-
patible syntax for directives as long as you don’t mix the XML syntax and the classic
syntax in the same page. These constructs take the following form:

<jsp:directive.directiveType attribute="value" />

For example, the XML equivalent of

<%@ page import="java.util.*" %>

is

<jsp:directive.page import="java.util.*" />

