
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

INVOKING JAVA CODE
WITH JSP SCRIPTING

ELEMENTS

Topics in This Chapter

• Static vs. dynamic text

• Dynamic code and good JSP design

• The importance of packages for
JSP helper/utility classes

• JSP expressions

• JSP scriptlets

• JSP declarations

• Servlet code resulting from JSP scripting elements

• Scriptlets and conditional text

• Predefined variables

• Servlets vs. JSP pages for similar tasks

319© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

11

This chapter discusses the “classic” approach to invoking Java code from within JSP
pages. This approach works in both JSP 1 (i.e., JSP 1.2 and earlier) and JSP 2. Chap-
ter 16 discusses the JSP expression language, which provides a concise mechanism to
indirectly invoke Java code, but only in JSP 2.0 and later.

11.1 Creating Template Text

In most cases, a large percentage of your JSP document consists of static text (usually
HTML), known as template text. In almost all respects, this HTML looks just like
normal HTML, follows all the same syntax rules, and is simply “passed through” to
the client by the servlet created to handle the page. Not only does the HTML look
normal, it can be created by whatever tools you already are using for building Web
pages. For example, we used Macromedia Dreamweaver for many of the JSP pages
in this book.

There are two minor exceptions to the “template text is passed straight through”
rule. First, if you want to have <% or %> in the output, you need to put <\% or %\> in
the template text. Second, if you want a comment to appear in the JSP page but not
in the resultant document, use

<%-- JSP Comment --%>

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements320

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

HTML comments of the form

<!-- HTML Comment -->

are passed through to the client normally.

11.2 Invoking Java Code from JSP

There are a number of different ways to generate dynamic content from JSP, as illus-
trated in Figure 11–1. Each of these approaches has a legitimate place; the size and
complexity of the project is the most important factor in deciding which approach is
appropriate. However, be aware that people err on the side of placing too much code
directly in the page much more often than they err on the opposite end of the spec-
trum. Although putting small amounts of Java code directly in JSP pages works fine
for simple applications, using long and complicated blocks of Java code in JSP pages
yields a result that is hard to maintain, hard to debug, hard to reuse, and hard to
divide among different members of the development team. See Section 11.3 (Limit-
ing the Amount of Java Code in JSP Pages) for details. Nevertheless, many pages are
quite simple, and the first two approaches of Figure 11–1 (placing explicit Java code
directly in the page) work quite well. This chapter discusses those approaches.

Figure 11–1 Strategies for invoking dynamic code from JSP.

Simple application or
small development team.

Complex application or
large development team.

• Call Java code directly. Place all Java code in JSP page.
Appropriate only for very small amounts of code. This chapter.

• Call Java code indirectly. Develop separate utility classes.
Insert into JSP page only the Java code needed to invoke the
utility classes. This chapter.

• Use beans. Develop separate utility classes structured as
beans. Use jsp:useBean, jsp:getProperty, and
jsp:setProperty to invoke the code. Chapter 14.

• Use the MVC architecture. Have a servlet respond to
original request, look up data, and store results in beans.
Forward to a JSP page to present results. JSP page uses beans.
Chapter 15.

• Use the JSP expression language. Use shorthand syntax to
access and output object properties. Usually used in
conjunction with beans and MVC. Chapter 16.

• Use custom tags. Develop tag handler classes. Invoke the tag
handlers with XML-like custom tags. Volume 2.

11.3 Limiting the Amount of Java Code in JSP Pages 321

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Types of JSP Scripting Elements
JSP scripting elements let you insert Java code into the servlet that will be generated
from the JSP page. There are three forms:

1. Expressions of the form <%= Java Expression %>, which are evalu-
ated and inserted into the servlet’s output.

2. Scriptlets of the form <% Java Code %>, which are inserted into the
servlet’s _jspService method (called by service).

3. Declarations of the form <%! Field/Method Declaration %>, which
are inserted into the body of the servlet class, outside any existing
methods.

Each of these scripting elements is described in more detail in the following
sections.

11.3 Limiting the Amount of
Java Code in JSP Pages

You have 25 lines of Java code that you need to invoke. You have two options: (1) put
all 25 lines directly in the JSP page, or (2) put the 25 lines of code in a separate Java
class, put the Java class in WEB-INF/classes/directoryMatchingPackageName, and use
one or two lines of JSP-based Java code to invoke it. Which is better? The second.
The second. The second! And all the more so if you have 50, 100, 500, or 1000 lines
of code. Here’s why:

• Development. You generally write regular classes in a Java-oriented
environment (e.g., an IDE like JBuilder or Eclipse or a code editor
like UltraEdit or emacs). You generally write JSP in an HTML-
oriented environment like Dreamweaver. The Java-oriented
environment is typically better at balancing parentheses, providing
tooltips, checking the syntax, colorizing the code, and so forth.

• Compilation. To compile a regular Java class, you press the Build
button in your IDE or invoke javac. To compile a JSP page, you have
to drop it in the right directory, start the server, open a browser, and
enter the appropriate URL.

• Debugging. We know this never happens to you, but when we write
Java classes or JSP pages, we occasionally make syntax errors. If there
is a syntax error in a regular class definition, the compiler tells you
right away and it also tells you what line of code contains the error. If

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements322

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

there is a syntax error in a JSP page, the server typically tells you what
line of the servlet (i.e., the servlet into which the JSP page was
translated) contains the error. For tracing output at runtime, with
regular classes you can use simple System.out.println
statements if your IDE provides nothing better. In JSP, you can
sometimes use print statements, but where those print statements are
displayed varies from server to server.

• Division of labor. Many large development teams are composed of
some people who are experts in the Java language and others who are
experts in HTML but know little or no Java. The more Java code that
is directly in the page, the harder it is for the Web developers (the
HTML experts) to manipulate it.

• Testing. Suppose you want to make a JSP page that outputs random
integers between designated 1 and some bound (inclusive). You use
Math.random, multiply by the range, cast the result to an int, and
add 1. Hmm, that sounds right. But are you sure? If you do this
directly in the JSP page, you have to invoke the page over and over to
see if you get all the numbers in the designated range but no numbers
outside the range. After hitting the Reload button a few dozen times,
you will get tired of testing. But, if you do this in a static method in a
regular Java class, you can write a test routine that invokes the method
inside a loop (see Listing 11.13), and then you can run hundreds or
thousands of test cases with no trouble. For more complicated
methods, you can save the output, and, whenever you modify the
method, compare the new output to the previously stored results.

• Reuse. You put some code in a JSP page. Later, you discover that you
need to do the same thing in a different JSP page. What do you do?
Cut and paste? Boo! Repeating code in this manner is a cardinal sin
because if (when!) you change your approach, you have to change
many different pieces of code. Solving the code reuse problem is what
object-oriented programming is all about. Don’t forget all your good
OOP principles just because you are using JSP to simplify the
generation of HTML.

“But wait!” you say, “I have an IDE that makes it easier to develop, debug, and
and compile JSP pages.” OK, good point. There is no hard and fast rule for exactly
how much Java code is too much to go directly in the page. But no IDE solves the
testing and reuse problems, and your general design strategy should be centered
around putting the complex code in regular Java classes and keeping the JSP pages
relatively simple.

11.3 Limiting the Amount of Java Code in JSP Pages 323

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Approach

Limit the amount of Java code that is in JSP pages. At the very least, use
helper classes that are invoked from the JSP pages. Once you gain more
experience, consider beans, MVC, and custom tags as well.

Almost all experienced developers have seen gross excesses: JSP pages that consist
of many lines of Java code followed by tiny snippets of HTML. That is obviously bad: it
is harder to develop, compile, debug, divvy up among team members, test, and reuse.
A servlet would have been far better. However, some of these developers have overre-
acted by flatly stating that it is always wrong to have any Java code directly in the JSP
page. Certainly, on some projects it is worth the effort to keep a strict separation
between the content and the presentation and to enforce a style where there is no Java
syntax in any of the JSP pages. But this is not always necessary (or even beneficial).

A few people go even further by saying that all pages in all applications should use
the Model-View-Controller (MVC) architecture, preferably with the Apache Struts
framework. This, in our opinion, is also an overreaction. Yes, MVC (Chapter 15) is a
great idea, and we use it all the time on real projects. And, yes, Struts (Volume 2) is a
nice framework; we are using it on a large project as the book is going to press. The
approaches are great when the situation gets moderately (MVC in general) or highly
(Struts) complicated.

But simple situations call for simple solutions. In our opinion, all the approaches
of Figure 11–1 have a legitimate place; it depends mostly on the complexity of the
application and the size of the development team. Still, be warned: beginners are
much more likely to err by making hard-to-manage JSP pages chock-full of Java code
than they are to err by using unnecessarily large and elaborate frameworks.

The Importance of Using Packages

Whenever you write Java classes, the class files are deployed in WEB-INF/classes/
directoryMatchingPackageName (or inside a JAR file that is placed in WEB-INF/lib).
This is true regardless of whether the class is a servlet, a regular helper class, a bean,
a custom tag handler, or anything else. All code goes in the same place.

With regular servlets, however, it is sometimes reasonable to use the default pack-
age, since you can use separate Web applications (see Section 2.11) to avoid name
conflicts with servlets from other projects. However, with code called from JSP, you
should always use packages. And, since when you write a utility for use from a servlet,
you do not know if you will later use it from a JSP page as well, this strategy means
that you should always use packages for all classes used by either servlets or JSP
pages.

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements324

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Approach

Put all your classes in packages.

Why? To answer that question, consider the following code. The code may or may
not contain a package declaration but does not contain import statements.

...

public class SomeClass {

public String someMethod(...) {

SomeHelperClass test = new SomeHelperClass(...);

String someString = SomeUtilityClass.someStaticMethod(...);

...

}

}

Now, the question is, what package will the system think that SomeHelperClass
and SomeUtilityClass are in? The answer is, whatever package SomeClass is
in. What package is that? Whatever is given in the package declaration. OK, fine.
Elementary Java syntax. No problem. OK, then, consider the following JSP code:

...

<%

SomeHelperClass test = new SomeHelperClass(...);

String someString = SomeUtilityClass.someStaticMethod(...);

%>

Now, same question: what package will the system think that SomeHelperClass
and SomeUtilityClass are in? Same answer: whatever package the current class
(the servlet that the JSP page is translated into) is in. What package is that? Hmm,
good question. Nobody knows! The package is not standardized by the JSP spec. So,
packageless helper classes, when used in this manner, will only work if the system
builds a packageless servlet. But they don’t always do that, so JSP code like this exam-
ple can fail. To make matters worse, servers sometimes do build packageless servlets
out of JSP pages. For example, most Tomcat versions build packageless servlets for
JSP pages that are in the top-level directory of the Web application. The problem is
that there is absolutely no standard to guide when they do this and when they don’t.
It would be far better if the JSP code just shown always failed. Instead, it sometimes
works and sometimes fails, depending on the server or even depending on what
directory the JSP page is in. Boo!

Be safe, be portable, plan ahead. Always use packages!

11.4 Using JSP Expressions 325

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

11.4 Using JSP Expressions

A JSP expression is used to insert values directly into the output. It has the following
form:

<%= Java Expression %>

The expression is evaluated, converted to a string, and inserted in the page. This
evaluation is performed at runtime (when the page is requested) and thus has full
access to information about the request. For example, the following shows the
date/time that the page was requested.

Current time: <%= new java.util.Date() %>

Predefined Variables

To simplify these expressions, you can use a number of predefined variables (or
“implicit objects”). There is nothing magic about these variables; the system simply
tells you what names it will use for the local variables in _jspService (the method
that replaces doGet in servlets that result from JSP pages). These implicit objects
are discussed in more detail in Section 11.12, but for the purpose of expressions, the
most important ones are these:

• request, the HttpServletRequest.
• response, the HttpServletResponse.
• session, the HttpSession associated with the request (unless

disabled with the session attribute of the page directive—see
Section 12.4).

• out, the Writer (a buffered version of type JspWriter) used to
send output to the client.

• application, the ServletContext. This is a data structure
shared by all servlets and JSP pages in the Web application and is good
for storing shared data. We discuss it further in the chapters on beans
(Chapter 14) and MVC (Chapter 15).

Here is an example:

Your hostname: <%= request.getRemoteHost() %>

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements326

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

JSP/Servlet Correspondence

Now, we just stated that a JSP expression is evaluated and inserted into the page out-
put. Although this is true, it is sometimes helpful to understand what is going on
behind the scenes.

It is actually quite simple: JSP expressions basically become print (or write)
statements in the servlet that results from the JSP page. Whereas regular HTML
becomes print statements with double quotes around the text, JSP expressions
become print statements with no double quotes. Instead of being placed in the
doGet method, these print statements are placed in a new method called
_jspService that is called by service for both GET and POST requests. For
instance, Listing 11.1 shows a small JSP sample that includes some static HTML and
a JSP expression. Listing 11.2 shows a _jspService method that might result. Of
course, different vendors will produce code in slightly different ways, and optimiza-
tions such as reading the HTML from a static byte array are quite common.

Also, we oversimplified the definition of the out variable; out in a JSP page is a
JspWriter, so you have to modify the slightly simpler PrintWriter that directly
results from a call to getWriter. So, don’t expect the code your server generates to
look exactly like this.

Listing 11.1 Sample JSP Expression: Random Number

<H1>A Random Number</H1>
<%= Math.random() %>

Listing 11.2 Representative Resulting Servlet Code: Random Number

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
HttpSession session = request.getSession();
JspWriter out = response.getWriter();
out.println("<H1>A Random Number</H1>");
out.println(Math.random());
...

}

11.4 Using JSP Expressions 327

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

If you want to see the exact code that your server generates, you’ll have to dig
around a bit to find it. In fact, some servers delete the source code files once they are
successfully compiled. But here is a summary of the locations used by three com-
mon, free development servers.

Tomcat Autogenerated Servlet Source Code
install_dir/work/Standalone/localhost/_
(The final directory is an underscore. More generally, in
install_dir/work/Standalone/localhost/webAppName.
The location varies slightly among various Tomcat versions.)

JRun Autogenerated Servlet Source Code
install_dir/servers/default/default-ear/default-war/WEB-INF/jsp
(More generally, in the WEB-INF/jsp directory of the Web application to which
the JSP page belongs. However, note that JRun does not save the .java files
unless you change the keepGenerated element from false to true in
install_dir/servers/default/SERVER-INF/default-web.xml.)

Resin Autogenerated Servlet Source Code
install_dir/doc/WEB-INF/work
(More generally, in the WEB-INF/work directory of the
Web application to which the JSP page belongs.)

XML Syntax for Expressions

XML authors can use the following alternative syntax for JSP expressions:

<jsp:expression>Java Expression</jsp:expression>

In JSP 1.2 and later, servers are required to support this syntax as long as authors
don’t mix the XML version and the standard JSP version (<%= ... %>) in the same
page. This means that, to use the XML version, you must use XML syntax in the entire
page. In JSP 1.2 (but not 2.0), this requirement means that you have to enclose the
entire page in a jsp:root element. As a result, most developers stick with the classic
syntax except when they are either generating XML documents (e.g., xhtml or SOAP)
or when the JSP page is itself the output of some XML process (e.g., XSLT).

Note that XML elements, unlike HTML ones, are case sensitive. So, be sure to
use jsp:expression in lower case.

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements328

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

11.5 Example: JSP Expressions

Listing 11.3 gives an example JSP page called Expressions.jsp. We placed the file
in a directory called jsp-scripting, copied the entire directory from our develop-
ment directory to the top level of the default Web application (in general, to the
top-level directory of the Web application—one level up from WEB-INF), and used
a URL of http://host/jsp-scripting/Expressions.jsp. Figures 11–2 and 11–3 show
some typical results.

Notice that we include META tags and a style sheet link in the HEAD section of the
JSP page. It is good practice to include these elements, but there are two reasons
why they are often omitted from pages generated by normal servlets.

First, with servlets, it is tedious to generate the required println statements.
With JSP, however, the format is simpler and you can make use of the code reuse
options in your usual HTML building tools. This convenience is an important factor
in the use of JSP. JSP pages are not more powerful than servlets (they are servlets
behind the scenes), but they are sometimes more convenient than servlets.

Second, servlets cannot use the simplest form of relative URLs (ones that refer to
files in the same directory as the current page), since the servlet directories are not
mapped to URLs in the same manner as are URLs for normal Web pages. Moreover,
servers are expressly prohibited from making content in WEB-INF/classes (or any-
where in WEB-INF) directly accessible to clients. So, it is impossible to put style sheets
in the same directory as servlet class files, even if you use the web.xml servlet and
servlet-mapping elements (see Section 2.11, “Web Applications: A Preview”) to
customize servlet URLs. JSP pages, on the other hand, are installed in the normal
Web page hierarchy on the server, and relative URLs are resolved properly as long as
the JSP page is accessed directly by the client rather than indirectly by means of a
RequestDispatcher (see Chapter 15, “Integrating Servlets and JSP: The Model
View Controller (MVC) Architecture”).

Thus, in most cases style sheets and JSP pages can be kept together in the same
directory. The source code for the style sheet, like all code shown or referenced in
the book, can be found at http://www.coreservlets.com.

Listing 11.3 Expressions.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Expressions</TITLE>
<META NAME="keywords"
 CONTENT="JSP,expressions,JavaServer Pages,servlets">
<META NAME="description"
 CONTENT="A quick example of JSP expressions.">

11.5 Example: JSP Expressions 329

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–2 Result of Expressions.jsp using Macromedia JRun and omitting the
testParam request parameter.

Figure 11–3 Result of Expressions.jsp using Caucho Resin and specifying testing as
the value of the testParam request parameter.

<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H2>JSP Expressions</H2>

 Current time: <%= new java.util.Date() %>
 Server: <%= application.getServerInfo() %>
 Session ID: <%= session.getId() %>
 The <CODE>testParam</CODE> form parameter:
 <%= request.getParameter("testParam") %>

</BODY></HTML>

Listing 11.3 Expressions.jsp (continued)

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements330

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

11.6 Comparing Servlets to JSP Pages

In Section 4.3, we presented an example of a servlet that outputs the values of three
designated form parameters. The code for that servlet is repeated here in Listing
11.4. Listing 11.5 (Figure 11–4) shows a version rewritten in JSP, using JSP expres-
sions to access the form parameters. The JSP version is clearly superior: shorter, sim-
pler, and easier to maintain.

Now, this is not to say that all servlets will convert to JSP so cleanly. JSP works best
when the structure of the HTML page is fixed but the values at various places need
to be computed dynamically. If the structure of the page is dynamic, JSP is less bene-
ficial. Sometimes servlets are better in such a case. And, of course, if the page con-
sists of binary data or has little static content, servlets are clearly superior.
Furthermore, sometimes the answer is neither servlets nor JSP alone, but rather a
combination of the two. For details, see Chapter 15 (Integrating Servlets and JSP:
The Model View Controller (MVC) Architecture).

Listing 11.4 ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading Three Request Parameters";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "\n" +
 " param1: "
 + request.getParameter("param1") + "\n" +
 " param2: "

11.6 Comparing Servlets to JSP Pages 331

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–4 Result of ThreeParams.jsp.

 + request.getParameter("param2") + "\n" +
 " param3: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

Listing 11.5 ThreeParams.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Reading Three Request Parameters</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Reading Three Request Parameters</H1>

 param1: <%= request.getParameter("param1") %>
 param2: <%= request.getParameter("param2") %>
 param3: <%= request.getParameter("param3") %>

</BODY></HTML>

Listing 11.4 ThreeParams.java (continued)

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements332

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

11.7 Writing Scriptlets

If you want to do something more complex than output the value of a simple expres-
sion, JSP scriptlets let you insert arbitrary code into the servlet’s _jspService
method (which is called by service). Scriptlets have the following form:

<% Java Code %>

Scriptlets have access to the same automatically defined variables as do expres-
sions (request, response, session, out, etc.). So, for example, if you want to
explicitly send output to the resultant page, you could use the out variable, as in the
following example.

<%
String queryData = request.getQueryString();
out.println("Attached GET data: " + queryData);
%>

In this particular instance, you could have accomplished the same effect more eas-
ily by using a combination of a scriptlet and a JSP expression, as below.

<% String queryData = request.getQueryString(); %>
Attached GET data: <%= queryData %>

Or, you could have used a single JSP expression, as here.

Attached GET data: <%= request.getQueryString() %>

In general, however, scriptlets can perform a number of tasks that cannot be
accomplished with expressions alone. These tasks include setting response headers
and status codes, invoking side effects such as writing to the server log or updating a
database, or executing code that contains loops, conditionals, or other complex con-
structs. For instance, the following snippet specifies that the current page is sent to
the client as Microsoft Word, not as HTML (which is the default). Since Microsoft
Word can import HTML documents, this technique is actually quite useful in real
applications.

<% response.setContentType("application/msword"); %>

It is important to note that you need not set response headers or status codes at the
very top of a JSP page, even though this capability appears to violate the rule that this
type of response data needs to be specified before any document content is sent to the
client. It is legal to set headers and status codes after a small amount of document
content because servlets that result from JSP pages use a special variety of Writer (of
type JspWriter) that partially buffers the document. This buffering behavior can be

11.7 Writing Scriptlets 333

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

changed, however; see Chapter 12 (Controlling the Structure of Generated Servlets:
The JSP page Directive) for a discussion of the buffer and autoflush attributes of
the page directive.

JSP/Servlet Correspondence

It is easy to understand how JSP scriptlets correspond to servlet code: the scriptlet
code is just directly inserted into the _jspService method: no strings, no print
statements, no changes whatsoever. For instance, Listing 11.6 shows a small JSP sam-
ple that includes some static HTML, a JSP expression, and a JSP scriptlet. Listing
11.7 shows a _jspService method that might result. Note that the call to bar (the
JSP expression) is not followed by a semicolon, but the call to baz (the JSP scriptlet)
is. Remember that JSP expressions contain Java values (which do not end in semico-
lons), whereas most JSP scriptlets contain Java statements (which are terminated by
semicolons). To make it even easier to remember when to use a semicolon, simply
remember that expressions get placed inside print or write statements, and
out.print(blah;); is clearly illegal.

Again, different vendors will produce this code in slightly different ways, and we
oversimplified the out variable (which is a JspWriter, not the slightly simpler
PrintWriter that results from a call to getWriter). So, don’t expect the code
your server generates to look exactly like this.

Listing 11.6 Sample JSP Expression/Scriptlet

<H2>foo</H2>
<%= bar() %>
<% baz(); %>

Listing 11.7 Representative Resulting Servlet Code: Expression/Scriptlet

public void _jspService(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
HttpSession session = request.getSession();
JspWriter out = response.getWriter();
out.println("<H2>foo</H2>");
out.println(bar());
baz();
...

}

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements334

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

XML Syntax for Scriptlets
The XML equivalent of <% Java Code %> is

<jsp:scriptlet>Java Code</jsp:scriptlet>

In JSP 1.2 and later, servers are required to support this syntax as long as authors
don’t mix the XML version (<jsp:scriptlet> ... </jsp:scriptlet>) and the
ASP-like version (<% ... %>) in the same page; if you use the XML version you
must use XML syntax consistently for the entire page. Remember that XML ele-
ments are case sensitive; be sure to use jsp:scriptlet in lower case.

11.8 Scriptlet Example

As an example of code that is too complex for a JSP expression alone, Listing 11.8
presents a JSP page that uses the bgColor request parameter to set the background
color of the page. Simply using

<BODY BGCOLOR="<%= request.getParameter("bgColor") %>">

would violate the cardinal rule of reading form data: always check for missing or mal-
formed data. So, we use a scriptlet instead. JSP-Styles.css is omitted so that the style
sheet does not override the background color. Figures 11–5, 11–6, and 11–7 show the
default result, the result for a background of C0C0C0, and the result for papayawhip
(one of the oddball X11 color names still supported by most browsers for historical
reasons), respectively.

Listing 11.8 BGColor.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Color Testing</TITLE>
</HEAD>
<%
String bgColor = request.getParameter("bgColor");
if ((bgColor == null) || (bgColor.trim().equals(""))) {
 bgColor = "WHITE";
}
%>
<BODY BGCOLOR="<%= bgColor %>">
<H2 ALIGN="CENTER">Testing a Background of "<%= bgColor %>"</H2>
</BODY></HTML>

11.8 Scriptlet Example 335

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–5 Default result of BGColor.jsp.

Figure 11–6 Result of BGColor.jsp when accessed with a bgColor parameter having the
RGB value C0C0C0.

Figure 11–7 Result of BGColor.jsp when accessed with a bgColor parameter having the
X11 color name papayawhip.

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements336

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

11.9 Using Scriptlets to Make Parts
of the JSP Page Conditional

Another use of scriptlets is to conditionally output HTML or other content that is not
within any JSP tag. Key to this approach are the facts that (a) code inside a scriptlet
gets inserted into the resultant servlet’s _jspService method (called by service)
exactly as written and (b) that any static HTML (template text) before or after a
scriptlet gets converted to print statements. This behavior means that scriptlets
need not contain complete Java statements and that code blocks left open can affect
the static HTML or JSP outside the scriptlets. For example, consider the JSP frag-
ment of Listing 11.9 that contains mixed template text and scriptlets.

You probably find the bold part a bit confusing. We certainly did the first few
times we saw constructs of this nature. Neither the “have a nice day” nor the “have a
lousy day” lines are contained within a JSP tag, so it seems odd that only one of the
two becomes part of the output for any given request. See Figures 11–8 and 11–9.

Don’t panic! Simply follow the rules for how JSP code gets converted to servlet
code. Once you think about how this example will be converted to servlet code by the
JSP engine, you get the following easily understandable result.

if (Math.random() < 0.5) {
 out.println("<H1>Have a <I>nice</I> day!</H1>");
} else {
 out.println("<H1>Have a <I>lousy</I> day!</H1>");
}

Listing 11.9 DayWish.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Wish for the Day</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<% if (Math.random() < 0.5) { %>
<H1>Have a <I>nice</I> day!</H1>
<% } else { %>
<H1>Have a <I>lousy</I> day!</H1>
<% } %>
</BODY></HTML>

11.9 Using Scriptlets to Make Parts of the JSP Page Conditional 337

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

The key is that the first two scriptlets do not contain complete statements, but
rather partial statements that have dangling braces. This serves to capture the subse-
quent HTML within the if or else clauses.

Figure 11–8 One possible result of DayWish.jsp.

Figure 11–9 Another possible result of DayWish.jsp.

Overuse of this approach can lead to JSP code that is hard to understand and
maintain. Avoid using it to conditionalize large sections of HTML, and try to keep
your JSP pages as focused on presentation (HTML output) tasks as possible. Never-
theless, there are some situations in which the alternative approaches are also unap-
pealing. The primary example is generation of lists or tables containing an
indeterminate number of entries. This happens quite frequently when you are pre-
senting data that is the result of a database query. See Chapter 17 (Accessing Data-
bases with JDBC) for details on database access from Java code. Besides, even if you
do not use this approach, you are bound to see examples of it in your projects, and
you need to understand how and why it works as it does.

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements338

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

11.10 Using Declarations

A JSP declaration lets you define methods or fields that get inserted into the main body
of the servlet class (outside the _jspService method that is called by service to
process the request). A declaration has the following form:

<%! Field or Method Definition %>

Since declarations do not generate output, they are normally used in conjunc-
tion with JSP expressions or scriptlets. In principle, JSP declarations can contain
field (instance variable) definitions, method definitions, inner class definitions, or
even static initializer blocks: anything that is legal to put inside a class definition
but outside any existing methods. In practice, however, declarations almost always
contain field or method definitions.

One caution is warranted, however: do not use JSP declarations to override the
standard servlet life-cycle methods (service, doGet, init, etc.). The servlet into
which the JSP page gets translated already makes use of these methods. There is no
need for declarations to gain access to service, doGet, or doPost, since calls to
service are automatically dispatched to _jspService, which is where code
resulting from expressions and scriptlets is put. However, for initialization and
cleanup, you can use jspInit and jspDestroy—the standard init and
destroy methods are guaranteed to call these two methods in servlets that come
from JSP.

Core Approach

For initialization and cleanup in JSP pages, use JSP declarations to
override jspInit or jspDestroy, not init or destroy.

Aside from overriding standard methods like jspInit and jspDestroy, the
utility of JSP declarations for defining methods is somewhat questionable. Moving
the methods to separate classes (possibly as static methods) makes them easier to
write (since you are using a Java environment, not an HTML-like one), easier to test
(no need to run a server), easier to debug (compilation warnings give the right line
numbers; no tricks are needed to see the standard output), and easier to reuse (many
different JSP pages can use the same utility class). However, using JSP declarations
to define instance variables (fields), as we will see shortly, gives you something not
easily reproducible with separate utility classes: a place to store data that is persistent
between requests.

11.10 Using Declarations 339

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Approach

Define most methods with separate Java classes, not JSP declarations.

JSP/Servlet Correspondence

JSP declarations result in code that is placed inside the servlet class definition but
outside the _jspService method. Since fields and methods can be declared in any
order, it does not matter whether the code from declarations goes at the top or bot-
tom of the servlet. For instance, Listing 11.10 shows a small JSP snippet that includes
some static HTML, a JSP declaration, and a JSP expression. Listing 11.11 shows a
servlet that might result. Note that the specific name of the resultant servlet is not
defined by the JSP specification, and in fact, different servers have different conven-
tions. Besides, as already stated, different vendors will produce this code in slightly
different ways, and we oversimplified the out variable (which is a JspWriter, not
the slightly simpler PrintWriter that results from a call to getWriter). Finally,
the servlet will never implement HttpJspPage directly, but rather will extend some
vendor-specific class that already implements HttpJspPage. So, don’t expect the
code your server generates to look exactly like this.

Listing 11.10 Sample JSP Declaration

<H1>Some Heading</H1>
<%!
 private String randomHeading() {
 return("<H2>" + Math.random() + "</H2>");
 }
%>
<%= randomHeading() %>

Listing 11.11 Representative Resulting Servlet Code:
Declaration

public class xxxx implements HttpJspPage {
 private String randomHeading() {
 return("<H2>" + Math.random() + "</H2>");
 }
 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements340

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

XML Syntax for Declarations

The XML equivalent of <%! Field or Method Definition %> is

<jsp:declaration>Field or Method Definition</jsp:declaration>

In JSP 1.2 and later, servers are required to support this syntax as long as authors don’t
mix the XML version (<jsp:declaration> ... </jsp:declaration>) and the
standard ASP-like version (<%! ... %>) in the same page. The entire page must
follow XML syntax if you are going to use the XML form, so most developers stick
with the classic syntax except when they are using XML anyhow. Remember that
XML elements are case sensitive; be sure to use jsp:declaration in lower case.

11.11 Declaration Example

In this example, the following JSP snippet prints the number of times the current
page has been requested since the server was booted (or the servlet class was
changed and reloaded). A hit counter in two lines of code!

<%! private int accessCount = 0; %>

Accesses to page since server reboot:

<%= ++accessCount %>

Recall that multiple client requests to the same servlet result only in multiple
threads calling the service method of a single servlet instance. They do not result in
the creation of multiple servlet instances except possibly when the servlet implements

response.setContentType("text/html");
HttpSession session = request.getSession();
JspWriter out = response.getWriter();
out.println("<H1>Some Heading</H1>");
out.println(randomHeading());
...

}

...
}

Listing 11.11 Representative Resulting Servlet Code:
Declaration (continued)

11.11 Declaration Example 341

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

the now-deprecated SingleThreadModel interface (see Section 3.7). Thus,
instance variables (fields) of a normal servlet are shared by multiple requests, and
accessCount does not have to be declared static. Now, advanced readers might
wonder if the snippet just shown is thread safe; does the code guarantee that each vis-
itor gets a unique count? The answer is no; in unusual situations multiple users could,
in principle, see the same value. For access counts, as long as the count is correct in
the long run, it does not matter if two different users occasionally see the same count.
But, for values such as session identifiers, it is critical to have unique values. For an
example that is similar to the previous snippet but that uses synchronized blocks to
guarantee thread safety, see the discussion of the isThreadSafe attribute of the
page directive in Chapter 12.

Listing 11.12 shows the full JSP page; Figure 11–10 shows a representative result.
Now, before you rush out and use this approach to track access to all your pages, a
couple of cautions are in order.

First of all, you couldn’t use this for a real hit counter, since the count starts over
whenever you restart the server. So, a real hit counter would need to use jspInit
and jspDestroy to read the previous count at startup and store the old count when
the server is shut down.

Second, even if you use jspDestroy, it would be possible for the server to crash
unexpectedly (e.g., when a rolling blackout strikes Silicon Valley). So, you would have
to periodically write the hit count to disk.

Finally, some advanced servers support distributed applications whereby a cluster of
servers appears to the client as a single server. If your servlets or JSP pages might need
to support distribution in this way, plan ahead and avoid the use of fields for persistent
data. Use a database instead. (Note that session objects are automatically shared across
distributed applications as long as the values are Serializable. But session values
are specific to each user, whereas we need client-independent data in this case.)

Listing 11.12 AccessCounts.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>JSP Declarations</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>JSP Declarations</H1>
<%! private int accessCount = 0; %>
<H2>Accesses to page since server reboot:
<%= ++accessCount %></H2>
</BODY></HTML>

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements342

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–10 Visiting AccessCounts.jsp after it has been requested nine previous times
by the same or different clients.

11.12 Using Predefined Variables

When you wrote a doGet method for a servlet, you probably wrote something like
this:

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");
HttpSession session = request.getSession();
PrintWriter out = response.getWriter();

out.println(...);
...

}

The servlet API told you the types of the arguments to doGet, the methods to call
to get the session and writer objects, and their types. JSP changes the method name
from doGet to _jspService and uses a JspWriter instead of a PrintWriter.
But the idea is the same. The question is, who told you what variable names to use?
The answer is, nobody! You chose whatever names you wanted.

For JSP expressions and scriptlets to be useful, you need to know what variable
names the autogenerated servlet uses. So, the specification tells you. You are sup-
plied with eight automatically defined local variables in _jspService, sometimes
called “implicit objects.” Nothing is special about these; they are merely the names of
the local variables. Local variables. Not constants. Not JSP reserved words. Nothing
magic. So, if you are writing code that is not part of the _jspService method,
these variables are not available. In particular, since JSP declarations result in code

11.12 Using Predefined Variables 343

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

that appears outside the _jspService method, these variables are not accessible in
declarations. Similarly, they are not available in utility classes that are invoked by JSP
pages. If you need a separate method to have access to one of these variables, do
what you always do in Java code: pass the variable along.

The available variables are request, response, out, session, application,
config, pageContext, and page. Details for each are given below. An additional
variable called exception is available, but only in error pages. This variable is dis-
cussed in Chapter 12 (Controlling the Structure of Generated Servlets: The JSP page
Directive) in the sections on the errorPage and isErrorPage attributes.

• request
This variable is the HttpServletRequest associated with the
request; it gives you access to the request parameters, the request type
(e.g., GET or POST), and the incoming HTTP headers (e.g., cookies).

• response
This variable is the HttpServletResponse associated with the
response to the client. Since the output stream (see out) is normally
buffered, it is usually legal to set HTTP status codes and response
headers in the body of JSP pages, even though the setting of headers
or status codes is not permitted in servlets once any output has been
sent to the client. If you turn buffering off, however (see the buffer
attribute in Chapter 12), you must set status codes and headers before
supplying any output.

• out
This variable is the Writer used to send output to the client.
However, to make it easy to set response headers at various places in
the JSP page, out is not the standard PrintWriter but rather a
buffered version of Writer called JspWriter. You can adjust the
buffer size through use of the buffer attribute of the page directive
(see Chapter 12). The out variable is used almost exclusively in
scriptlets since JSP expressions are automatically placed in the output
stream and thus rarely need to refer to out explicitly.

• session
This variable is the HttpSession object associated with the request.
Recall that sessions are created automatically in JSP, so this variable is
bound even if there is no incoming session reference. The one
exception is the use of the session attribute of the page directive
(Chapter 12) to disable automatic session tracking. In that case,
attempts to reference the session variable cause errors at the time
the JSP page is translated into a servlet. See Chapter 9 for general
information on session tracking and the HttpSession class.

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements344

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• application
This variable is the ServletContext as obtained by
getServletContext. Servlets and JSP pages can store persistent
data in the ServletContext object rather than in instance variables.
ServletContext has setAttribute and getAttribute
methods that let you store arbitrary data associated with specified
keys. The difference between storing data in instance variables and
storing it in the ServletContext is that the ServletContext is
shared by all servlets and JSP pages in the Web application, whereas
instance variables are available only to the same servlet that stored the
data.

• config
This variable is the ServletConfig object for this page. In
principle, you can use it to read initialization parameters, but, in
practice, initialization parameters are read from jspInit, not from
_jspService.

• pageContext
JSP introduced a class called PageContext to give a single point of
access to many of the page attributes. The PageContext class has
methods getRequest, getResponse, getOut, getSession,
and so forth. The pageContext variable stores the value of the
PageContext object associated with the current page. If a method or
constructor needs access to multiple page-related objects, passing
pageContext is easier than passing many separate references to
request, response, out, and so forth.

• page
This variable is simply a synonym for this and is not very useful. It
was created as a placeholder for the time when the scripting language
could be something other than Java.

11.13 Comparing JSP Expressions,
Scriptlets, and Declarations

This section contains several similar examples, each of which generates random inte-
gers between 1 and 10. They illustrate the difference in how the three JSP scripting
elements are typically used. All the pages use the randomInt method defined in
Listing 11.13.

11.13 Comparing JSP Expressions, Scriptlets, and Declarations 345

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Example 1: JSP Expressions
In the first example, the goal is to output a bulleted list of five random integers from
1 to 10. Since the structure of this page is fixed and we use a separate helper class for
the randomInt method, JSP expressions are all that is needed. Listing 11.14 shows
the code; Figure 11–11 shows a typical result.

Listing 11.13 RanUtilities.java

package coreservlets; // Always use packages!!

/** Simple utility to generate random integers. */

public class RanUtilities {

 /** A random int from 1 to range (inclusive). */

 public static int randomInt(int range) {
 return(1 + ((int)(Math.random() * range)));
 }

 /** Test routine. Invoke from the command line with
 * the desired range. Will print 100 values.
 * Verify that you see values from 1 to range (inclusive)
 * and no values outside that interval.
 */

 public static void main(String[] args) {
 int range = 10;
 try {
 range = Integer.parseInt(args[0]);
 } catch(Exception e) { // Array index or number format
 // Do nothing: range already has default value.
 }
 for(int i=0; i<100; i++) {
 System.out.println(randomInt(range));
 }
 }
}

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements346

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–11 Result of RandomNums.jsp. Different values are displayed whenever the
page is reloaded.

Listing 11.14 RandomNums.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Random Numbers</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Random Numbers</H1>

 <%= coreservlets.RanUtilities.randomInt(10) %>
 <%= coreservlets.RanUtilities.randomInt(10) %>
 <%= coreservlets.RanUtilities.randomInt(10) %>
 <%= coreservlets.RanUtilities.randomInt(10) %>
 <%= coreservlets.RanUtilities.randomInt(10) %>

</BODY></HTML>

11.13 Comparing JSP Expressions, Scriptlets, and Declarations 347

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Example 2: JSP Scriptlets
In the second example, the goal is to generate a list of between 1 and 10 entries
(selected at random), each of which is a number between 1 and 10. Because the
number of entries in the list is dynamic, a JSP scriptlet is needed. But, should there
be a single scriptlet containing a loop that outputs the numbers, or should we use the
dangling-brace approach described in Section 11.9 (Using Scriptlets to Make Parts of
the JSP Page Conditional)? The choice is not clear here: the first approach yields a
more concise result, but the second approach exposes the element to the Web
developer, who might want to modify the type of bullet or insert additional format-
ting elements. So, we present both approaches. Listing 11.15 shows the first
approach (a single loop that uses the predefined out variable); Listing 11.16 shows
the second approach (capturing the “static” HTML into the loop). Figures 11–12 and
11–13 show some typical results.

Listing 11.15 RandomList1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Random List (Version 1)</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Random List (Version 1)</H1>

<%
int numEntries = coreservlets.RanUtilities.randomInt(10);
for(int i=0; i<numEntries; i++) {
 out.println("" + coreservlets.RanUtilities.randomInt(10));
}
%>

</BODY></HTML>

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements348

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–12 Result of RandomList1.jsp. Different values (and a different number of list
items) are displayed whenever the page is reloaded.

Listing 11.16 RandomList2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Random List (Version 2)</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>Random List (Version 2)</H1>

<%
int numEntries = coreservlets.RanUtilities.randomInt(10);
for(int i=0; i<numEntries; i++) {
%>
<%= coreservlets.RanUtilities.randomInt(10) %>
<% } %>

</BODY></HTML>

11.13 Comparing JSP Expressions, Scriptlets, and Declarations 349

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–13 Result of RandomList2.jsp. Different values (and a different number of list
items) are displayed whenever the page is reloaded.

Example 3: JSP Declarations

In this third example, the requirement is to generate a random number on the first
request, then show the same number to all users until the server is restarted.
Instance variables (fields) are the natural way to accomplish this persistence. The
reason is that instance variables are initialized only when the object is built and serv-
lets are built once and remain in memory between requests: a new instance is not
allocated for each request. JSP expressions and scriptlets deal only with code inside
the _jspService method, so they are not appropriate here. A JSP declaration is
needed instead. Listing 11.17 shows the code; Figure 11–14 shows a typical result.

Listing 11.17 SemiRandomNumber.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Semi-Random Number</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

Chapter 11 ■ Invoking Java Code with JSP Scripting Elements350

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 11–14 Result of SemiRandomNumber.jsp. Until the server is restarted, all clients
see the same result.

<BODY>
<%!
private int randomNum = coreservlets.RanUtilities.randomInt(10);
%>
<H1>Semi-Random Number:
<%= randomNum %></H1>
</BODY>
</HTML>

Listing 11.17 SemiRandomNumber.jsp (continued)

