
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

OVERVIEW OF JSP
TECHNOLOGY

Topics in This Chapter

• Understanding the need for JSP

• Evaluating the benefits of JSP

• Comparing JSP to other technologies

• Avoiding JSP misconceptions

• Installing JSP pages

• Surveying JSP syntax

303© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

10

JavaServer Pages (JSP) technology enables you to mix regular, static HTML with
dynamically generated content. You simply write the regular HTML in the nor-
mal manner, using familiar Web-page-building tools. You then enclose the code
for the dynamic parts in special tags, most of which start with <% and end with %>.

For example, Listing 10.1 (Figure 10–1) presents a very small JSP page that uses a
request parameter to display the title of a book. Notice that the listing is mostly stan-
dard HTML; the dynamic code consists entirely of the half line shown in bold in the
listing.

Listing 10.1 OrderConfirmation.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Order Confirmation</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H2>Order Confirmation</H2>
Thanks for ordering <I><%= request.getParameter("title") %></I>!
</BODY></HTML>

Chapter 10 ■ Overview of JSP Technology304

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 10–1 Result of OrderConfirmation.jsp.

You can think of servlets as Java code with HTML inside; you can think of JSP as
HTML with Java code inside. Now, neither servlets nor JSP pages are restricted to
using HTML, but they usually do, and this over-simplified description is a common
way to view the technologies.

Now, despite the large apparent differences between JSP pages and servlets,
behind the scenes they are the same thing. JSP pages are translated into servlets, the
servlets are compiled, and at request time it is the compiled servlets that execute. So,
writing JSP pages is really just another way of writing servlets.

Even though servlets and JSP pages are equivalent behind the scenes, they are not
equally useful in all situations. Separating the static HTML from the dynamic con-
tent provides a number of benefits over servlets alone, and the approach used in
JavaServer Pages offers several advantages over competing technologies. This chap-
ter explains the reasons for using JSP, discusses its benefits, dispels some misconcep-
tions, shows you how to install and execute JSP pages, and summarizes the JSP syntax
discussed in the rest of the book.

10.1 The Need for JSP

“Hey!” you say, “You just spent several chapters extolling the virtues of servlets. I like
servlets. Servlets are convenient to write and efficient to execute. They make it sim-
ple to read request parameters and to set up custom code to handle missing and mal-
formed data. They can easily make use of HTTP request headers and can flexibly
manipulate HTTP response data. They can customize their behavior based on cook-
ies, track user-specific data with the session-tracking API, and talk to relational data-
bases with JDBC. What more do I need?”

Well, this is a good point. Servlets are indeed useful, and JSP by no means makes
them obsolete. However, look at the list of topics for which servlets excel. They are all
tasks related to programming or data processing. But servlets are not so good at presen-
tation. Servlets have the following deficiencies when it comes to generating the output:

10.2 Benefits of JSP 305

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• It is hard to write and maintain the HTML. Using print
statements to generate HTML? Hardly convenient: you have to use
parentheses and semicolons, have to insert backslashes in front of
embedded double quotes, and have to use string concatenation to put
the content together. Besides, it simply does not look like HTML, so it
is harder to visualize. Compare this servlet style with Listing 10.1
where you hardly even notice that the page is not an ordinary HTML
document.

• You cannot use standard HTML tools. All those great Web-site
development tools you have are of little use when you are writing Java
code.

• The HTML is inaccessible to non-Java developers. If the HTML
is embedded within Java code, a Web development expert who does
not know the Java programming language will have trouble reviewing
and changing the HTML.

10.2 Benefits of JSP

JSP pages are translated into servlets. So, fundamentally, any task JSP pages can per-
form could also be accomplished by servlets. However, this underlying equivalence
does not mean that servlets and JSP pages are equally appropriate in all scenarios.
The issue is not the power of the technology, it is the convenience, productivity, and
maintainability of one or the other. After all, anything you can do on a particular com-
puter platform in the Java programming language you could also do in assembly lan-
guage. But it still matters which you choose.

JSP provides the following benefits over servlets alone:

• It is easier to write and maintain the HTML. Your static code is
ordinary HTML: no extra backslashes, no double quotes, and no
lurking Java syntax.

• You can use standard Web-site development tools. For example,
we use Macromedia Dreamweaver for most of the JSP pages in the
book. Even HTML tools that know nothing about JSP can be used
because they simply ignore the JSP tags.

• You can divide up your development team. The Java
programmers can work on the dynamic code. The Web developers can
concentrate on the presentation layer. On large projects, this division
is very important. Depending on the size of your team and the
complexity of your project, you can enforce a weaker or stronger
separation between the static HTML and the dynamic content.

Chapter 10 ■ Overview of JSP Technology306

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Now, this discussion is not to say that you should stop using servlets and use only
JSP instead. By no means. Almost all projects will use both. For some requests in
your project, you will use servlets. For others, you will use JSP. For still others, you
will combine them with the MVC architecture (Chapter 15). You want the appropri-
ate tool for the job, and servlets, by themselves, do not complete your toolkit.

10.3 Advantages of JSP Over
Competing Technologies

A number of years ago, the lead author of this book (Marty) was invited to attend a
small 20-person industry roundtable discussion on software technology. Sitting in the
seat next to Marty was James Gosling, inventor of the Java programming language.
Sitting several seats away was a high-level manager from a very large software com-
pany in Redmond, Washington. During the discussion, the moderator brought up the
subject of Jini, which at that time was a new Java technology. The moderator asked
the manager what he thought of it, and the manager responded that it was too early
to tell, but that it seemed to be an excellent idea. He went on to say that they would
keep an eye on it, and if it seemed to be catching on, they would follow his company’s
usual “embrace and extend” strategy. At this point, Gosling lightheartedly interjected
“You mean disgrace and distend.”

Now, the grievance that Gosling was airing was that he felt that this company
would take technology from other companies and suborn it for their own purposes.
But guess what? The shoe is on the other foot here. The Java community did not
invent the idea of designing pages as a mixture of static HTML and dynamic code
marked with special tags. For example, ColdFusion did it years earlier. Even ASP (a
product from the very software company of the aforementioned manager) popular-
ized this approach before JSP came along and decided to jump on the bandwagon. In
fact, JSP not only adopted the general idea, it even used many of the same special
tags as ASP did.

So, the question becomes: why use JSP instead of one of these other technologies?
Our first response is that we are not arguing that everyone should. Several of those
other technologies are quite good and are reasonable options in some situations. In
other situations, however, JSP is clearly better. Here are a few of the reasons.

Versus .NET and Active Server Pages (ASP)

.NET is well-designed technology from Microsoft. ASP.NET is the part that directly
competes with servlets and JSP. The advantages of JSP are twofold.

10.3 Advantages of JSP Over Competing Technologies 307

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

First, JSP is portable to multiple operating systems and Web servers; you aren’t
locked into deploying on Windows and IIS. Although the core .NET platform runs
on a few non-Windows platforms, the ASP part does not. You cannot expect to
deploy serious ASP.NET applications on multiple servers and operating systems. For
some applications, this difference does not matter. For others, it matters greatly.

Second, for some applications the choice of the underlying language matters
greatly. For example, although .NET’s C# language is very well designed and is simi-
lar to Java, fewer programmers are familiar with either the core C# syntax or the
many auxiliary libraries. In addition, many developers still use the original version of
ASP. With this version, JSP has a clear advantage for the dynamic code. With JSP, the
dynamic part is written in Java, not VBScript or another ASP-specific language, so
JSP is more powerful and better suited to complex applications that require reusable
components.

You could make the same argument when comparing JSP to the previous version
of ColdFusion; with JSP you can use Java for the “real code” and are not tied to a par-
ticular server product. However, the current release of ColdFusion is within the con-
text of a J2EE server, allowing developers to easily mix ColdFusion and servlet/JSP
code.

Versus PHP
PHP (a recursive acronym for “PHP: Hypertext Preprocessor”) is a free, open-source,
HTML-embedded scripting language that is somewhat similar to both ASP and JSP.
One advantage of JSP is that the dynamic part is written in Java, which already has an
extensive API for networking, database access, distributed objects, and the like,
whereas PHP requires learning an entirely new, less widely used language. A second
advantage is that JSP is much more widely supported by tool and server vendors
than is PHP.

Versus Pure Servlets
JSP doesn’t provide any capabilities that couldn’t, in principle, be accomplished with
servlets. In fact, JSP documents are automatically translated into servlets behind the
scenes. But it is more convenient to write (and to modify!) regular HTML than to use
a zillion println statements to generate the HTML. Plus, by separating the presen-
tation from the content, you can put different people on different tasks: your Web
page design experts can build the HTML by using familiar tools and either leave
places for your servlet programmers to insert the dynamic content or invoke the
dynamic content indirectly by means of XML tags.

Chapter 10 ■ Overview of JSP Technology308

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Does this mean that you can just learn JSP and forget about servlets? Absolutely
not! JSP developers need to know servlets for four reasons:

1. JSP pages get translated into servlets. You can’t understand how JSP
works without understanding servlets.

2. JSP consists of static HTML, special-purpose JSP tags, and Java code.
What kind of Java code? Servlet code! You can’t write that code if you
don’t understand servlet programming.

3. Some tasks are better accomplished by servlets than by JSP. JSP is
good at generating pages that consist of large sections of fairly well
structured HTML or other character data. Servlets are better for gen-
erating binary data, building pages with highly variable structure, and
performing tasks (such as redirection) that involve little or no output.

4. Some tasks are better accomplished by a combination of servlets and
JSP than by either servlets or JSP alone. See Chapter 15 for details.

Versus JavaScript
JavaScript, which is completely distinct from the Java programming language, is
normally used to dynamically generate HTML on the client, building parts of the
Web page as the browser loads the document. This is a useful capability and does
not normally overlap with the capabilities of JSP (which runs only on the server).
JSP pages still include SCRIPT tags for JavaScript, just as normal HTML pages do.
In fact, JSP can even be used to dynamically generate the JavaScript that will be
sent to the client. So, JavaScript is not a competing technology; it is a complemen-
tary one.

It is also possible to use JavaScript on the server, most notably on Sun ONE (for-
merly iPlanet), IIS, and BroadVision servers. However, Java is more powerful, flexi-
ble, reliable, and portable.

Versus WebMacro or Velocity
JSP is by no means perfect. Many people have pointed out features that could be
improved. This is a good thing, and one of the advantages of JSP is that the specifica-
tion is controlled by a community that draws from many different companies. So, the
technology can incorporate improvements in successive releases.

However, some groups have developed alternative Java-based technologies to try
to address these deficiencies. This, in our judgment, is a mistake. Using a third-party
tool like Apache Struts (see Volume 2 of this book) that augments JSP and servlet
technology is a good idea when that tool adds sufficient benefit to compensate for the
additional complexity. But using a nonstandard tool that tries to replace JSP is a bad
idea. When choosing a technology, you need to weigh many factors: standardization,

10.4 Misconceptions About JSP 309

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

portability, integration, industry support, and technical features. The arguments for
JSP alternatives have focused almost exclusively on the technical features part. But
portability, standardization, and integration are also very important. For example, as
discussed in Section 2.11, the servlet and JSP specifications define a standard direc-
tory structure for Web applications and provide standard files (.war files) for deploy-
ing Web applications. All JSP-compatible servers must support these standards.
Filters (Volume 2) can be set up to apply to any number of servlets or JSP pages, but
not to nonstandard resources. The same goes for Web application security settings
(see Volume 2).

Besides, the tremendous industry support for JSP and servlet technology results
in improvements that mitigate many of the criticisms of JSP. For example, the JSP
Standard Tag Library (Volume 2) and the JSP 2.0 expression language (Chapter 16)
address two of the most well-founded criticisms: the lack of good iteration constructs
and the difficulty of accessing dynamic results without using either explicit Java code
or verbose jsp:useBean elements.

10.4 Misconceptions About JSP

In this section, we address some of the most common misunderstandings about JSP.

Forgetting JSP Is Server-Side Technology
The book’s Web site lists the lead author’s email address: hall@coreservlets.com. Fur-
thermore, Marty teaches JSP and servlet training courses for various companies and
at public venues. Consequently, he gets a lot of email with servlet and JSP questions.
Here are some typical questions he has received (most of them repeatedly).

• Our server is running JDK 1.4. So, how do I put a Swing component
in a JSP page?

• How do I put an image into a JSP page? I do not know the proper Java
I/O commands to read image files.

• Since Tomcat does not support JavaScript, how do I make images that
are highlighted when the user moves the mouse over them?

• Our clients use older browsers that do not understand JSP. What
should we do?

• When our clients use “View Source” in a browser, how can I prevent
them from seeing the JSP tags?

Chapter 10 ■ Overview of JSP Technology310

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

All of these questions are based upon the assumption that browsers know some-
thing about the server-side process. But they do not. Thus:

• For putting applets with Swing components into Web pages, what
matters is the browser’s Java version—the server’s version is irrelevant.
If the browser supports the Java 2 platform, you use the normal
APPLET (or Java plug-in) tag and would do so even if you were using
non-Java technology on the server.

• You do not need Java I/O to read image files; you just put the
image in the directory for Web resources (i.e., two levels up from
WEB-INF/classes) and output a normal IMG tag.

• You create images that change under the mouse by using client-side
JavaScript, referenced with the SCRIPT tag; this does not change just
because the server is using JSP.

• Browsers do not “support” JSP at all—they merely see the output of
the JSP page. So, make sure your JSP outputs HTML compatible with
the browser, just as you would do with static HTML pages.

• And, of course you need not do anything to prevent clients from
seeing JSP tags; those tags are processed on the server and are not part
of the output that is sent to the client.

Confusing Translation Time with Request Time

A JSP page is converted into a servlet. The servlet is compiled, loaded into the
server’s memory, initialized, and executed. But which step happens when? To answer
that question, remember two points:

• The JSP page is translated into a servlet and compiled only the first
time it is accessed after having been modified.

• Loading into memory, initialization, and execution follow the normal
rules for servlets.

Table 10.1 gives some common scenarios and tells whether or not each step
occurs in that scenario. The most frequently misunderstood entries are highlighted.
When referring to the table, note that servlets resulting from JSP pages use the
_jspService method (called for both GET and POST requests), not doGet or
doPost. Also, for initialization, they use the jspInit method, not the init
method.

10.4 Misconceptions About JSP 311

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Thinking JSP Alone Is Sufficient
There is a small community of developers that are so enamored with JSP that they
use it for practically everything. Most of these developers never use servlets; many
never even use auxiliary helper classes—they just build large complex JSP pages for
each and every task.

This is a mistake. JSP is an excellent tool. But the fundamental problem it
addresses is presentation: the difficulty of creating and maintaining HTML to repre-
sent the result of a request. JSP is a good choice for pages with relatively fixed for-
mats and lots of static text. JSP, by itself, is less good for applications that have a
variable structure, is poor for applications that have mostly dynamic data, and is
totally unsuitable for applications that output binary data or manipulate HTTP with-
out generating explicit output (as with the search engine servlet of Section 6.4). Still
other applications are best solved with neither servlets alone nor JSP alone, but with
a combination of the two (see Chapter 15).

JSP is a powerful and widely applicable tool. Nevertheless, other tools are some-
times better. Choose the right tool for the job.

Table 10.1 JSP Operations in Various Scenarios

JSP page
translated
into servlet

Servlet
compiled

Servlet
loaded into
server’s
memory

jspInit
called

_jspService
called

Page first written

Request 1 Yes Yes Yes Yes Yes

Request 2 No No No No Yes

Server restarted

Request 3 No No Yes Yes Yes

Request 4 No No No No Yes

Page modified

Request 5 Yes Yes Yes Yes Yes

Request 6 No No No No Yes

Chapter 10 ■ Overview of JSP Technology312

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Thinking Servlets Alone
Are Sufficient

At the other end of the spectrum from the JSP-only camp is the servlets-only camp.
Adherents of this camp state, quite rightly, that JSP pages are really just dressed up
servlets, so JSP pages cannot accomplish anything that could not also be done with
servlets. From this, they conclude that you should stick with servlets, where you have
access to the full underlying power, have complete control, and can see exactly what
is happening. Hmm, have you heard this argument before? It sounds a lot like the
position of the “don’t be a wimp; write all your code in assembly language” crowd.

Yes, you could use servlets for any task for which JSP is used. But it is not always
equally convenient to do so. For tasks that involve a lot of static HTML content, use
of JSP technology (or a combination of JSP and servlets) simplifies the creation and
maintenance of the HTML, permits you to use industry standard Web site creation
tools, and lets you “divide and conquer” by splitting your effort between the Java
developers and the Web developers.

Servlets are powerful and widely applicable tools. Nevertheless, other tools are
sometimes better. Choose the right tool for the job.

10.5 Installation of JSP Pages

Servlets require you to set your CLASSPATH, use packages to avoid name conflicts,
install the class files in servlet-specific locations, and use special-purpose URLs. Not
so with JSP pages. JSP pages can be placed in the same directories as normal HTML
pages, images, and style sheets; they can also be accessed through URLs of the same
form as those for HTML pages, images, and style sheets. Here are a few examples of
default installation locations (i.e., locations that apply when you aren’t using custom
Web applications) and associated URLs. Where we list SomeDirectory, you can use
any directory name you like, except that you are never allowed to use WEB-INF or
META-INF as directory names. When using the default Web application, you also have
to avoid a directory name that matches the URL prefix of any other Web application.
For information on defining your own Web applications, see Section 2.11.

JSP Directories for Tomcat
(Default Web Application)

• Main Location.
install_dir/webapps/ROOT

10.5 Installation of JSP Pages 313

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Corresponding URL.
http://host/SomeFile.jsp

• More Specific Location (Arbitrary Subdirectory).
install_dir/webapps/ROOT/SomeDirectory

• Corresponding URL.
http://host/SomeDirectory/SomeFile.jsp

JSP Directories for JRun
(Default Web Application)

• Main Location.
install_dir/servers/default/default-ear/default-war

• Corresponding URL.
http://host/SomeFile.jsp

• More Specific Location (Arbitrary Subdirectory).
install_dir/servers/default/default-ear/default-war/SomeDirectory

• Corresponding URL.
http://host/SomeDirectory/SomeFile.jsp

JSP Directories for Resin
(Default Web Application)

• Main Location.
install_dir/doc

• Corresponding URL.
http://host/SomeFile.jsp

• More Specific Location (Arbitrary Subdirectory).
install_dir/doc/SomeDirectory

• Corresponding URL.
http://host/SomeDirectory/SomeFile.jsp

Note that, although JSP pages themselves need no special installation directories,
any Java classes called from JSP pages still need to go in the standard locations used
by servlet classes (e.g., .../WEB-INF/classes/directoryMatchingPackageName; see Sec-
tion 2.10). Note that the Java classes used by JSP pages should always be in packages;
this point is discussed further in later chapters.

Chapter 10 ■ Overview of JSP Technology314

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

10.6 Basic Syntax

Here is a quick summary of the various JSP constructs you will see in this book.

HTML Text

• Description:
HTML content to be passed unchanged to the client

• Example:
<H1>Blah</H1>

• Discussed in:
Section 11.1

HTML Comments

• Description:
HTML comment that is sent to the client but not displayed by the
browser

• Example:
<!-- Blah -->

• Discussed in:
Section 11.1

Template Text

• Description:
Text sent unchanged to the client. HTML text and HTML comments
are just special cases of this.

• Example:
Anything other than the syntax of the following subsections

• Discussed in:
Section 11.1

JSP Comment

• Description:
Developer comment that is not sent to the client

• Example:
<%-- Blah --%>

10.6 Basic Syntax 315

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Discussed in:
Section 11.1

JSP Expression

• Description:
Expression that is evaluated and sent to the client each time the page
is requested

• Example:
<%= Java Value %>

• Discussed in:
Section 11.4

JSP Scriptlet

• Description:
Statement or statements that are executed each time the page is
requested

• Example:
<% Java Statement %>

• Discussed in:
Section 11.7

JSP Declaration

• Description:
Field or method that becomes part of class definition when page is
translated into a servlet

• Examples:
<%! Field Definition %>
<%! Method Definition %>

• Discussed in:
Section 11.10

JSP Directive

• Description:
High-level information about the structure of the servlet code (page),
code that is included at page-translation time (include), or custom
tag libraries used (taglib)

Chapter 10 ■ Overview of JSP Technology316

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Example:
<%@ directive att="val" %>

• Discussed in:
page: Chapter 12
include: Chapter 13
taglib and tag: Volume 2

JSP Action

• Description:
Action that takes place when the page is requested

• Example:
<jsp:blah>...</jsp:blah>

• Discussed in:
jsp:include and related: Chapter 13
jsp:useBean and related: Chapter 14
jsp:invoke and related: Volume 2

JSP Expression Language Element

• Description:
Shorthand JSP expression

• Example:
${ EL Expression }

• Discussed in:
Chapter 16

Custom Tag (Custom Action)

• Description:
Invocation of custom tag

• Example:
<prefix:name>
Body
</prefix:name>

• Discussed in:
Volume 2

10.6 Basic Syntax 317

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Escaped Template Text

• Description:
Text that would otherwise be interpreted specially. Slash is removed
and remaining text is sent to the client

• Examples:
<\%
%\>

• Discussed in:
Section 11.1

